银行数据治理:数据质量管理实践
现代商业银行日常经营活动中积累了大量数据,这些数据除了支持银行前台业务流程运转之外,越来越多地被用于决策支持领域,风险控制、产品定价、绩效考核等管理决策过程也都需要大量高质量数据支持。银行日常经营决策过程的背后,实质是数据的生产、传递和利用过程。
此外,日益全面的和严格的监管措施和信息披露要求,也对银行数据提出了前所未有的挑战。如果不能对这些数据进行有效管理,其价值就得不到很好体现,甚至会给运营管理带来负面作用,具体表现为:
- 一是缺乏统一数据标准,难以建立全面、准确、完整地反映企业运营状况的单一数据视图,难以做到数据的逻辑整合而不仅仅是物理集中;
- 二是缺乏规范的数据质量治理流程和考核机制,不能及时发现数据质量问题,或缺乏有效解决途径;
- 三是对数据采集、分布、流转及应用的规划存在不合理现象,数据需求、数据质量、数据应用等问题的管理和解决分散在不同业务和技术部门,没有一个清晰的协调机制和统一的报告渠道,业务不能及时、按需获得数据支持;
- 四是缺乏有效的数据安全管理机制,对敏感信息的访问缺乏有效控制,对银行形成潜在的声誉和法律风险等。为使这些数据“包袱”变成“金矿”,数据治理体系的构建就变得尤为重要和迫切。
01 数据治理体系简介
数据治理是为满足企业内部信息需求,提升企业信息服务水准而制定的相关流程、政策、标准以及相关技术手段,用于保证信息的可用性、可获取性、高质量、一致性以及安全性。数据治理体系建设的目的,是建立数据拥有者、使用者、数据以及支撑系统之间的和谐互补关系,从全企业视角协调、统领各个层面的数据管理工作,确保内部各类人员能够得到及时、准确的数据支持和服务。通常认为,数据治理至少应当涵盖如下功能域:数据质量管理、元数据管理、数据标准管理数据安全管理和主数据管理,现对上述功能域说明如下:
1.数据质量管理
对支持业务需求的数据进行全面质量管理,通过数据质量相关管理办法、组织、流程、评价考核规则的制定,及时发现并解决数据质量问题,提升数据的完整性、及时性、准确性及一致性,提升业务价值。
2.元数据管理
元数据是关于数据的数据,即对数据的描述信息。根据其属性的不同,元数据可分为技术元数据和业务元数据。元数据管理是元数据的定义、收集、管理和发布的方法、工具及流程的集合,通过完成对相关业务元数据及技术元数据的集成及应用,提供数据路径、数据归属信息,并对业务术语、文档进行集中管理,借助变更报告、影响分析以及业务术语管理等应用, 以此保证数据的完整性、控制数据质量、减少业务术语歧义和建立业务人员之间、技术人员之间,以及双方的沟通平台。
3.数据标准管理
通过建立一整套数据规范、管控流程和技术工具来确保银行各种重要信息,包括产品、客户、机构、账户等信息在全行内外使用和交换的一致和准确。数据标准可分为技术标准和业务标准。
4.数据安全管理
通过建立对数据及相关信息系统进行保护的一系列措施, 确保数据免遭未经授权的访问、使用、修改或删除,保证数据完整性、保密性和可用性,具体可分为管理和技术两大类措施。
5.主数据管理
主数据指描述核心业务实体的数据,如客户、机构、员工、产品等。这些数据变化相对缓慢并通常在企业内跨业务重复使用。主数据管理适用于管理、协调、监控与企业主要业务实体相关联的主数据的一系列规则、技术、应用、策略和程序。
02 数据质量管理简介
业界普遍认可的数据质量定义为数据对其期望目的的适合度,即数据质量管理生命周期及其相关的数据质量管理流程,都要为确保数据满足其自身预期目标提供相应的方法和手段。
数据质量管理基础和问题分类
下列要素是进行数据质量管理的基础:
- 1.数据质量的好坏是由用户以及数据使用价值所决定的。
- 2.数据质量的好坏代表着数据在数据知识应用中、数据所存在的系统中以及数据使用过程中被应用或者有价值的程度。
- 3.只有当数据被下游过程(系统或用户)所接收并使用时,数据质量问题的研讨才有意义。
- 4.数据是持续变更的,数据质量管理是一个持续过程而不是一次性活动。
银行关注的常见数据质量问题可以归成如下7类:
1.定义缺失,指缺少关键业务元素定义,导致对同一字段的理解偏差。例如,
什么是“一个客户”,不同业务有不同理解,通常风险应用将组织机构号作为对公客户的“身份证”,一个组织机构号代表一个客户;而核心系统对客户号的分配较为随意,允许一个组织机构号下存在多个客户号。
2.数据异常,指系统的个别字段出现了异常信息,包括取值错误,格式错误、多余字符、乱码等。
3.信息缺失或不准确,指在系统表中已经设计了某些字段,但在使用过程中, 很多记录却没有收集这些字段的信息,或存在信息收集不准确、信息重复登记等情况。信息缺失或不准确通常在客户信息方面最为严重。
4.系统之间数据不一致,主要体现在两个方面:
- (1)系统间数据维护不一致。为了满足各个系统内部逻辑、提高访问效率和减少数据传输,相同信息可能在不同系统进行冗余存放。但冗余存放的数据如果不进行同步或及时的数据维护,则必会导致这些数据的不一致。例如,银行通常存在核心系统与信贷系统数据不一致的问题。
- (2)系统之间数据同步时效性造成的不一致。典型案例如下:由于某些银行的贷记卡系统是外包系统,因此总账系统在 T+1 日才能取到贷记卡 T 日的数据,但是其他系统的科目余额缺失 T+1 日的数据,于是此种同步时效性的差异就导致了系统之间数据不一致。
5.数据完整性问题。数据完整性问题主要体现在两个方面:(1)参照完整性,是指一个表 A的外键不包含无效的键值,例如,借据表中记录了合同号,但是在合同表中无法找到相关记录;(2)数据含义冲突,如某些账户,从账户属性、存期等字段看,应是通知存款产品,但从科目看,又是普通定期产品。
6.数据生命周期问题。银行中的关键数据,例如,账户、客户、产品信息等, 都有若干日期字段记录其生命周期,这些日期字段包括创建/开户日期、关闭/
销户日期、最后交易日期和最后修改日期等,但是在业务系统中往往存在修改了记录状态却并未同步更新相关日期字段的情况。此外,还有一个违反合理数据生命周期的常见做法,就是直接在物理上删除记录。
7.代码问题。包括三个与代码相关的问题:
- (1)代码不统一问题,即不同应用之间相同用途代码的编码不一致;
- (2)未代码化问题,即常见情况使用文字存储,而非将信息代码化,很多时候会发现信息存储的不少,但却不便于分析使用。
- (3)意外代码,即实际数据中出现了未定义的代码值。
03 数据质量管理方法论
图 1 描述了权威人士普遍认可的数据质量管理方法论,共分六步。
第一步:定义及验证
首先,从技术和业务两个层面对数据应当满足的质量目标进行定义。表1列出了一系列数据质量度量标准,但最终的定义应当以更规范的形式进行描述。例如,属性 X的缺失率不超过2%。其次,对于派生数据,其源数据和转换的规则必须详细说明。最后,上面描述的定义和规则将作为数据质量评估计划的输入源。数据质量评估计划主要用来验证定义和规则的正确性,并且这个计划将详细描述数据必须满足的、适合它预期用途的属性,即它定义了数据质量。这个计划还将指导初始的数据度量,通常也成为数据剖析。
表1 数据质量度量标准
Accuracy 正确性 | Completeness 完整性 |
Consistency 一致性 | Continuity 连续性 |
Precedence 先后顺序 | Precision 精确度 |
Granularity 数据粒度 | Currency 当前性 |
Duration 数据时间跨度 | Retention 数据保存周期 |
Identity 唯一性 | Reference 参照完整性 |
Cardinality 数据对应关系 | Inheritance 继承关系 |
Value Set 数值集合 | Relationship 依赖关系 |
第二步:影响分析与共性分析
完成数据质量目标定义后,需要评估一个特定的数据质量问题在预期的数据使用适合性方面带来的影响,并根据影响分析结果可以确定数据质量问题的重要性与优先级别。
所谓共性分析就是分析错误具有的共性,我们期望一次可以将许多错误归结到某类共同原因。这个分析将为下一步追踪根本原因做好准备。
第三步:追踪根本原因
鱼骨图是一个众所周知的用于鉴别数据质量背后根本原因的工具,它反映了需要达到的和实际的数据质量之间的差距原因,通常是信息、流程、技术、人员等因素所导致。
第四步:预防/修复数据质量问题
- 1.导致数据质量问题的根本原因,最常见的有人员、流程、业务系统前端、业务系统数据库、数据抽取和加载过程等方面处理不当,这些因素都有可能产生数据质量问题。对于图3前三项(人员、流程、业务系统前端),重点在于预防,对于后三项(业务系统数据库,抽取、加载),则通常通过修复的手段来解决。
- 2.每类数据质量问题的预防/修复都有有利和不利的一面,比如,由于人员产生的质量问题,有利方面是可以再源头预防,不利方面在于人员往往会疏于管理、容易遗忘以及不同人员的差异性、专注点不同,这些都会不可避免地产生一定的数据质量问题。
- 3.涉及的数据量。通常数据质量问题需要修复的数据量有大致规律,如人员、流程、前端应用产生的质量问题需要修复的数据量往往不大,而数据库处理、数据抽取和加载等后台环节导致的数据质量问题通常设计的数据量较大。对于已经发生的数据质量问题,只能通过修复措施解决,但是从长远来看,重视预防措施, 在源头控制错误的产生更为重要。
第五步:趋势监控
一个已知的数据质量问题被修复后并不意味着这个特定问题就被永远解决了。如果没有有效地预防措施,错误仍有可能再现。因此,对重要数据质量问题应当持续监控。
第六步:识别和研究偏差
监控流程来识别问题。例如,当一个已知数据的质量超过了允许的控制范围, 流程将需要从该分支返回到第三步再一次识别根本原因。
04 数据质量问题特征分析
根据数据质量定义,数据的不同使用目的会导致不同的数据质量要求,例如, 业务系统对数据的使用目的主要是为了保证业务流程的正常运转和满足一些简单的统计功能,因此只要业务流程和统计正常,就可以认为数据质量满足要求;而分析型系统对数据的使用目的则多种多样,而且涵盖企业运营的方方面面,那么满足业务流程正常运转的需要并不一定就能保证满足分析的需求,因此分析型应用的需求是决定数据质量管理目标的主要因素。
在这一前提下,对企业内部数据流转过程各环节中呈现出来的数据质量问题特性作如下分析,如图6所示,数据流转过程被分成三个阶段(环节):
- 1.数据生产环节:企业内部的原始数据,绝大部分都产生自业务源系统,很少量的增值数据(Value-addedata)产生于分析型系统。
- 2.数据集成环节:在基础数据平台类系统(ODS/数据仓库和数据集市)中,集成来自不同源系统的数据,并按照数据模型整合。
- 3.数据使用环节:由各类分析型应用组成,也包括随机业务查询、数据分析、数据挖掘等信息访问手段。
数据质量问题的产生主要在于数据产生环节,其次在于数据集成环节的数据加工过程,而在数据使用环节,由于原则上不再对数据作修改,因此基本上不产生数据质量问题。
数据质量问题的发现则不同,基本呈现出相反特征:一是业务源系统虽然是数据的主要产生环节,但是通常只能发现业务流程相关的数据质量问题,而且仅限于本系统内部;二是数据集成环节由于是企业内部数据的一个最主要会聚点,因此通常也是数据质量问题暴露最多的环节;三是数据使用环节是数据质量问题频繁暴露的另一个环节,主要是因为对数据的使用决定了数据质量问题的定义,所以很多质量问题都是在使用时被首次发现。
05 在不同流转环节关注的数据质量
基于数据质量管理的关键环节和质量问题特性,再结合业界事实数据质量管理的最佳实践,建议在不同流转环节侧重完成的功能点实现应如下:
1.数据产生环节。
修正——数据质量问题必须在源头得到修正,这是数据质量管理的一项基本原则。
预防——相对于修正,预防的意义更大,主要原因在于可以防止产生新的数据质量问题。
定义——由于数据质量问题的定义主要取决于使用目的原则,因此数据质量问题的定义主要应当结合数据使用环节来发起,但事实上常常都是基于源系统的数据结构来进行定义。
2.数据集成环节。
检查——技术数据平台类系统作为银行数据的主要会聚点,在此环节进行数据质量问题检查的效用最高。
报告——对于数据质量检查结果,应当以报告形式展开,并通过一定的机制(自动工作流程或人工流程)通知相关的数据质量问题责任人,如业务源系统项目组、业务部门、数据仓库或应用项目组等。
跟踪——由于来自业务源系统的数据每天都会加载到基础数据平台类系统中,因此,基础数据平台类系统应当被利用来对数据质量问题的解决进行跟踪,并将跟踪结果作为提升数据质量问题治理成效的一个依据。
3.数据使用环节。
定义——如前所述,在数据使用环节就根据数据的使用目标来定义数据应当满足的质量标准,并作为日后上下游系统之间服务水平协议(Service LevelAgreement,SLA)的输入接口。
评估——作为数据的最终使用者,在使用环节应当对数据质量治理的成效进行评估,并作为下一阶段设定数据质量管理目标的依据之一。
06 数据质量管理流程的关键点
数据质量管理流程应当涵盖从“数据产生”到“数据集成”再到“数据使用”在内的全过程。为了在银行全行范围内进行有效的数据质量管理,数据质量管理的不同功能点应恰当分布在个流程的相应环节,在基础数据平台类系统上构建数据质量管理系统,并将源系统、相关应用以及相关科技和业务用户都纳入数据质量问题的发现——修正——跟踪——评估的闭环流程当中,如此才是实施数据质量管理的最佳选择。
此外,数据质量管理成败的关键在于合理有效的组织架构和流程,而不是管理系统自身,因此应当更为重视数据质量管理配套的组织架构和管理流程建设。
在构建数据质量管理体系时,以下关键因素应当考虑:跨部门以上主管领导的重视和牵头;负责解决数据质量问题的专门和专业组织;负责解决数据质量问题的统一和专业流程;负责解决数据质量问题的统一平台;负责侦测数据质量问题的专业工具。
07 数据质量管理与数据治理体系的有机结合
数据质量管理应当与整个企业级的数据治理体系有机结合,图7 简要说明了这些治理体系各主要组件之间的关系。
1.数据标准是数据质量管理进行质量检查的规则,因此数据与标准不相符,就是一个典型的数据质量问题,通过部署数据质量管理系统,可以对数据标准的落地实施提供有效的监控、检验和督促手段。
2.元数据管理系统可以作为数据质量管理的一个输入端,辅助数据质量检查 脚本的自动生成,而数据质量管理系统中存储的检查规则等信息又是一项元数据, 应当被元数据管理系统所采集。
3.数据安全管理中定义的数据所有者,是构建数据质量治理闭环流程和确定数据整改权责的重要依据。
相关文章:
银行数据治理:数据质量管理实践
现代商业银行日常经营活动中积累了大量数据,这些数据除了支持银行前台业务流程运转之外,越来越多地被用于决策支持领域,风险控制、产品定价、绩效考核等管理决策过程也都需要大量高质量数据支持。银行日常经营决策过程的背后,实质…...
2.7V至25V宽输入电压15A 峰值电流
HT7179是一款高功率异步升压转换器,集成 20mΩ功率开关管,为便携式系统提供高效的 小尺寸解决方案。 HT7179具有2.7V至25V宽输入电压范围,可为 采用单节或两节锂电池,或12V铅酸电池的应 用提供支持。该器件具备15A开关电流能力&a…...
Vue 父子组件应用指南:从基础到实战
文章目录 一、创建父组件二、创建子组件三、在父组件中使用子组件四、父子组件之间的通信1. 数据传递2. 事件传递 Vue.js 是一种流行的 JavaScript 框架,用于构建用户界面。其中,父子组件的概念是 Vue 开发中非常重要的一部分。本文将介绍如何使用 Vue 创…...
todotodo
todotodo...
创建autotool项目
GNU Autotools是linux系统一套自动化编译工具,生成的项目可移植,通过configure && make即可生成目标程序。GNU Autotools组件有:autoscan, aclocal, autoconf, automake,autoheader等。 不用管这些工具的原理,只要知道他们…...
计算机概念
计算机的体系结构 计算机俗称“电脑”computer(kəmˈpjuːtə(r))哈哈,本质上就是一台在各个领域被广泛使用的设备,主要由硬件和软件两大部分组成。 常见的硬件:CPU、内存、硬盘、显卡、主板、键盘、显示器、鼠标、... CPU - 中央处理…...
【数学建模系列】TOPSIS法的算法步骤及实战应用——MATLAB实现
文章目录 TOPSIS简介方法和原理数学定义数学语言描述现实案例 正负理想解定义实例 量纲 TOPSIS法的算法步骤1.用向量规范化的方法求得规范决策矩阵2.构成加权规范阵C(c~ij~)~m*n~3.确定正负理想解的距离4.计算各方案到正理想解与负理想解的距离5.计算各方案的综合评价指数6.排列…...
网络安全(黑客)工具
1.Nmap 它是网络管理员 必用的软件之一,以及用以评估网络系统安全。正如大多数被用于网络安全的工具,nmap 也是不少黑客及骇客(又称脚本小子 )爱用的工具 。系统管理员可以利用nmap来探测工作环境中未经批准使用的服务器ÿ…...
探究前后端数据交互方式
前端和后端在 Web 开发中扮演着不同的角色,两者需要进行数据的传递和交互。本篇文章将主要讨论前后端数据交互方式的不同类型和应用场景。 一、什么是前后端数据交互? 在 Web 开发中,前端负责用户界面的设计和交互,后端负责数据…...
Yolov5轻量化:CVPR2023|RIFormer:无需TokenMixer也能达成SOTA性能的极简ViT架构
1.RIFormer介绍 论文:https://arxiv.org/pdf/2304.05659.pdf 本文基于重参数机制提出了RepIdentityFormer方案以研究无Token Mixer的架构体系。紧接着,作者改进了学习架构以打破无Token Mixer架构的局限性并总结了优化策略。搭配上所提优化策略后,本文构建了一种极致简单且…...
Spring-Retry实现及原理
前言 重试,其实我们其实很多时候都需要的,为了保证容错性,可用性,一致性等。一般用来应对外部系统的一些不可预料的返回、异常等,特别是网络延迟,中断等情况。还有在现在流行的微服务治理框架中࿰…...
Java中的锁
为什么会有这些锁呢? 因为一种类型的锁很难应对线程操作同步资源的情况。 乐观锁和悲观锁 自旋锁和适应性自旋锁 无锁、偏向锁、轻量级锁和重量级锁 公平锁和非公平锁 可重入锁和非可重入锁 乐观锁和悲观锁 悲观锁认为当它操作数据的时候,必然用一…...
学习系列:5种常见的单例模式变体及其实现方式
单例模式是一种创建型设计模式,它保证一个类只有一个实例,并提供了一个全局访问点。在实际应用中,我们可能会遇到一些特殊情况,需要对单例模式进行一些变体,以满足不同的需求。下面介绍几种常见的单例模式变体。 1. 懒…...
三菱FX5U系列PLC之间进行简易PLC间链接功能的具体方法
三菱FX5U系列PLC之间进行简易PLC间链接功能的具体方法 功能介绍: 在最多8台FX5U或者FX3U PLC之间通过RS-485通信方式连接,进行软元件相互链接的功能。 接线注意事项: 根据链接模式和所使用的从站数量的不同,链接软元件的占用点数也有所变化。根据链接软元件的起始编号,对占…...
基于DBACAN的道路轨迹点聚类
目录 前言道路栅格化轨迹聚类参考资料 前言 很多针对道路轨迹的挖掘项目前期都需要对道路进行一段一段的分割成路段,然后对每一个路段来单独进行考察,如设定路段限速标识,超速概率等,如何对道路进行划分,其实是一个很…...
【项目】接入飞书平台
前言 项目有和飞书打通的需求,因为是第一次打通,摸索过程还是花了些时间的,现在相关笔记分享给大家。 步骤 1、熟悉开发文档 熟悉飞书的开发文档:开发文档 ,找到你需要的接口,拿我为例,我需…...
c++11 标准模板(STL)(std::ios_base)(三)
定义于头文件 <ios> class ios_base; 类 ios_base 是作为所有 I/O 流类的基类工作的多用途类。它维护数种数据: 1) 状态信息:流状态标志; 2) 控制信息:控制输入和输出序列格式化和感染的本地环境的标志; 3)…...
在线协同办公小程序开发搭建开发环境
目录 介绍 开发环境说明 虚拟机 原因 VirtualBox虚拟机 VMware虚拟机v15 安装MySQL数据库 安装步骤 导入EMOS系统数据库 安装MongoDB数据库 启动Navicat,选择创建MongoDB连接 创建用户 搭建Redis数据库 配置Maven 安装IDEA插件 Lombok插件 …...
【编译、链接、装载六】汇编——目标文件
【编译和链接六】汇编——目标文件 一、目标文件_存储格式1、生成目标文件2、目标文件存储格式3、file查看文件格式 二、查看目标文件的内部结构——objdump三、代码段四、 数据段和只读数据段五、 ELF文件结构描述1、头文件2、段表2.1、重定位表2.2、字符串表2.3、查看重定位表…...
王道计算机考研408计算机组成原理汇总(下)
提示:真正的英雄是明白世界的残酷,也遭受了社会带给他的苦难,他依然能用心的说“我热爱这个世界,我愿竭尽所能去为我的世界而好好战斗 文章目录 前言4.1.1 指令格式4.1.2 扩展操作码指令格式4.2.1 指令寻址4.2.2 数据寻址4.2.3 偏移寻址4.2.4 堆栈寻址汇总前言4.3.1 高级语…...
偏向锁、轻量级锁、重量级锁、自旋锁、自适应自旋锁
1. 偏向锁 偏向锁就是在运行过程中,对象的锁偏向某个线程。即在开启偏向锁机制的情况下,某个线程获得锁,当该线程下次再想要获得锁时,不需要重新申请获得锁(即忽略synchronized关键词),直接就可…...
Delta 一个新的 git diff 对比显示工具
目录 介绍git diff 介绍delta介绍 一、安装1.下载 Git2.下载 delta3.解压4.修改配置文件5. 修改主题6.其他配置和说明 二、对比命令1.在项目中 git diff 常用命令2.对比电脑上两个文件3.对比电脑上的两个文件夹 三、在Git 命令行中使用效果四、在idea 的Terminal命令行中使用效…...
C# 二进制序列化和反序列化示例
.NET框架提供了两种种串行化的方式: 1、是使用BinaryFormatter进行串行化; 2、使用XmlSerializer进行串行化。 第一种方式提供了一个简单的二进制数据流以及某些附加的类型信息,而第二种将数据流格式化为XML存储。可以使用[Serializable]属…...
【CSS】文字扫光 | 渐变光
码来 可调整角度与颜色值来改变效果 <p class"gf-gx-color">我是帅哥</p> <style>.gf-gx-color {background: -webkit-linear-gradient(135deg,red,red 25%,red 50%,#fff 55%,red 60%,red 80%,red 95%,red);-webkit-text-fill-color: transparen…...
Overhaul Distillation(ICCV 2019)原理与代码解析
paper:A Comprehensive Overhaul of Feature Distillation official implementation:GitHub - clovaai/overhaul-distillation: Official PyTorch implementation of "A Comprehensive Overhaul of Feature Distillation" (ICCV 2019) 本文的…...
<Linux开发>驱动开发 -之-内核定时器与中断
<Linux开发>驱动开发 -之-内核定时器与中断 交叉编译环境搭建: <Linux开发> linux开发工具-之-交叉编译环境搭建 uboot移植可参考以下: <Linux开发> -之-系统移植 uboot移植过程详…...
希尔贝壳邀您参加2023深圳国际人工智能展览会
2023深圳国际人工智能展览会“AIE”将于2023年5月16-18日在深圳国际会展中心 (宝安)举办,希尔贝壳受邀参加,展位号:A331。 伴随着智能行业的快速发展,展会已被越来越多的企业列入每年必选展会,也成为各采购商选购的理…...
设计优质微信小程序的实用指南!
微信小程序是一种快速发展的应用形式,设计良好的小程序能够提升用户体验并吸引更多的用户。在设计微信小程序时,有一些关键的指南可以帮助我们做出出色的设计。以下是即时设计总结的一些设计指南,希望能对准备设计微信小程序的人有所帮助。 …...
大数据期末总结
文章目录 一、这学期分别学习了Scala、spark、spring、SpringMvc、SpringBoot1、scala2、spark3、spring4、SpringMvc5、SpringBoot 二、总结 一、这学期分别学习了Scala、spark、spring、SpringMvc、SpringBoot 1、scala Scala是一门基于JVM的编程语言,具有强大的…...
selenium面试题总结
今天有同学问到seleinum面试的时候会问到的问题,随便想了想,暂时纪录一下。欢迎大家在评论中提供更多问题。 1.selenium中如何判断元素是否存在? selenium中没有提供原生的方法判断元素是否存在,一般我们可以通过定位元素异常捕获…...
山乙建设公司网站/百度舆情
设置vscode为中文ctrshiftp 输入 configure language 进 en更改为zh-cn , 重启vscode即可 , 如果还不行,就安装插件 转载于:https://www.cnblogs.com/enych/p/10550095.html...
wordpress本地上传视频资料/产品代理推广方案
为什么项目过程中折腾我们的往往是一些微不足道的小事?新功能添加"顺手就改,转眼就忘,一旦出错,一问就蒙"的情况如何避免? 答案:流程 一年前我还对流程表示反感和排斥,因为我将"流程"简单地等同于堆积如山的文档和照本宣科的会议,牺牲了弥足珍贵的设计和…...
linux下载wordpress/哔哩哔哩推广网站
印度市场是当下全球前20大智能手机市场当中增长最快的,这让全球手机企业都高度关注该市场。苹果当然也垂涎该市场,不过它似乎并不愿意放弃利润以获取更多市场份额,而转为在印度市场推售发布已有三年时间的iPhone6s,并将在该市场生…...
网站建设毕业答辩ppt/如何创建网站平台
背景 项目中使用到List求交集,很容易想到collecion.retainAll()方法,但是在数据量比较大时,这个方法效率并不高。本文研究了几种常用的方法,以供大家参考。 方法 【首先】 梳理下思路,List去重一般有几种方法。 『…...
做网站和做小程序有什么不同/河南网络推广公司
在WPF中关于RichEditControl的使用,以下代码是我采用信息发布进行简单的测试。 1、新增一篇文章,文章中包含文本、图片等信息,点击保存按钮,即可发布信息。 2、在数据行上,点击查看按钮,即可看到该文章的…...
做化工的网站/南京网站制作设计
微信上进行的网页宣传、游戏传播、APP下载各类活动很多,但是各位朋友肯定经常会遇到一些特殊需求,网页需要在手机默认浏览器打开而不是微信内置浏览器。这个问题怎么解决呢? 斗在微信营销的浪潮中 解决方案:微信中打开链接,自动打…...