基于深度学习的高精度打电话检测识别系统(PyTorch+Pyside6+YOLOv5模型)
摘要:基于深度学习的高精度打电话检测识别系统可用于日常生活中或野外来检测与定位打电话目标,利用深度学习算法可实现图片、视频、摄像头等方式的打电话目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括打电话训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本打电话检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
基本介绍
近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度打电话识别检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。
环境搭建
(1)下载YOLOv5源码库,放到自己电脑的目录,之后打开cmd进入到YOLOv5目录里面,本文演示的目录是:D:\vscode_workspace\yolov5
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple
界面及功能展示
下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
模型选择与初始化
用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。
置信分与IOU的改变
在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。
图像选择、检测与导出
用户可以点击选择图像按钮上传单张图片进行检测与识别。
再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。
视频选择、检测与导出
用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。
摄像头打开、检测与结束
用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。
算法原理介绍
本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。
YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。
数据集介绍
本系统使用的打电话数据集手动标注了打电话这一个类别,数据集总计10967张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的打电话检测识别数据集包含训练集9317张图片,验证集1650张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
关键代码解析
本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
Pyside6界面设计
Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。
实验结果与分析
在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的打电话数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
下图展示了本博文在使用YOLOv5模型对打电话数据集进行训练时候的Mosaic数据增强图像。
综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。
其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、苹果检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。
完整项目目录如下所示:
相关文章:

基于深度学习的高精度打电话检测识别系统(PyTorch+Pyside6+YOLOv5模型)
摘要:基于深度学习的高精度打电话检测识别系统可用于日常生活中或野外来检测与定位打电话目标,利用深度学习算法可实现图片、视频、摄像头等方式的打电话目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检…...
Vue搭建智能文本检索视频界面
前言 随着人工智能技术的发展,智能文本检索已经成为了一种非常流行的技术。在视频领域中,智能文本检索技术可以帮助用户快速找到自己需要的视频片段,提高用户的观看体验。本文将介绍如何使用Vue框架搭建一个智能文本检索视频界面,…...

软考A计划-系统集成项目管理工程师-一般补充知识-中
点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列 👉关于作者 专注于Android/Unity和各种游戏开发技巧ÿ…...

springboot-内置Tomcat
一、springboot的特性之一 基于springboot的特性 自动装配Configuretion 注解 二、springboot内置Tomcat步骤 直接看SpringApplication方法的代码块 总纲: 1、在SpringApplication.run 初始化了一个上下文ConfigurableApplicationContext configurableApplica…...

Flink流批一体计算(2):Flink关键特性
目录 Flink关键特性 流式处理 丰富的状态管理 丰富的时间语义支持 Data pipeline 容错机制 Flink SQL CEP in SQL Flink 应用程序可以消费来自消息队列或分布式日志这类流式数据源(例如 Apache Kafka 或 Kinesis)的实时数据,也可以从各…...

2023软件工程中各种图在现代企业级开发中的使用频率
概览 系统流程图 ✔ 数据流图 不常用 ER图 ✔ 状态转换图 ✔ Warnier图 不常用 IPO图 不常用 Petri网 不常用 层次方框图 不常用 层次图 a.k.a. H图 ✔ 1,层次图描绘软件的层次结构.层层次方框图描绘的是数据结构。 2,层次图的方框表示模块或子模块。层次方框图的方框表示数据结…...

macOS Big Sur 11.7.8 (20G1351) 正式版 ISO、PKG、DMG、IPSW 下载
macOS Big Sur 11.7.8 (20G1351) 正式版 ISO、PKG、DMG、IPSW 下载 本站下载的 macOS 软件包,既可以拖拽到 Applications(应用程序)下直接安装,也可以制作启动 U 盘安装,或者在虚拟机中启动安装。另外也支持在 Window…...
【C++案例】一个项目掌握C++基础-通讯录管理系统
文章目录 1、系统需求2、菜单功能3、退出功能4、添加联系人4.1 设计联系人结构体4.2 设计通讯录结构体4.3 main函数中创建通讯录4.4 封装添加联系人函数4.5 测试添加联系人功能 5、显示联系人5.1 封装显示联系人函数5.2 测试显示联系人功能 6、删除联系人6.1 封装检测联系人是否…...

Triton教程 --- 动态批处理
Triton教程 — 动态批处理 Triton系列教程: 快速开始利用Triton部署你自己的模型Triton架构模型仓库存储代理模型设置优化动态批处理 Triton 提供了动态批处理功能,将多个请求组合在一起执行同一模型以提供更大的吞吐量。 默认情况下,只有当每个输入在…...
Python的并行(持续更新)
0. 参考: 《Python并行编程 中文版》https://python-parallel-programmning-cookbook.readthedocs.io/zh_CN/latest/index.html 1. 线程和进程: 进程可以包含多个并行运行的线程;通常,操作系统创建和管理线程比进程更省CPU资源&am…...

chatgpt赋能python:Python实现Fibonacci数列
Python实现Fibonacci数列 Fibonacci数列是一个非常经典的数列,定义如下: F ( 0 ) 0 , F ( 1 ) 1 F(0)0, F(1)1 F(0)0,F(1)1 F ( n ) F ( n − 1 ) F ( n − 2 ) F(n)F(n-1)F(n-2) F(n)F(n−1)F(n−2) 也就是说,第n个数等于前两个数之和…...

开环模块化多电平换流器仿真(MMC)N=6
模型简介: 运行环境MATLAB2021a 开环模块化多电平换流器仿真(MMC)N=6,连接负载,采用载波移相调制。 可以得到换流器输出N+1=7电平的相电压波形。可考虑线路阻抗。 子模块采用半桥结…...

java springboot整合MyBatis联合查询
前面文章 java springboot整合MyBatis做数据库查询操作写了springboot整合MyBatis的方法 并演示了基础查询的语法 根据id查 那么 我们这次来演示联合查询 我们staff 表 内容如下 每条数据 对应的都有一个departmentid 这是 department部门表的外键id department表内容如下 如…...

windows2022证书配置.docx
Windows证书的配置 要求两台主机,一台作为域,一台进入域 按要求来选择角色服务 确认之后安装 安装完以后配置证书服务 选择服务 按要求配置 注:此处不用域用户登陆无法使用企业CA 按要求来 创建新的私钥 这几处检查无误后默认即可 有效期…...

HCIP网络笔记分享——IA回顾及OSPF协议
第一部分 HCIA回顾1、网络基础2、动态路由协议3、路由认证4、路由控制(AD metric ) 一、知识巩固二、场景模拟1、获取IP地址1.1 DHCP --- 动态主机配置协议1.1.1 DHCP客户端1.1.2 DHCP服务器1.1.3 DHCP客户端1.1.4 DHCP服务器 2、打开浏览器3、路由器进行…...

网络:IP地址、子网掩码、网络地址、广播地址、网段、网关
目录 一、IP地址 二、子网掩码 三、网络地址 四、广播地址 五、网段 六、网关 七、IP地址、子网掩码、网络地址、广指地址、网殷、网关的关系 参考链接 一、IP地址 IP地址是因特网协议(IP)中使用的一种数字标识符,用于唯一地标识网络…...

编程的未来 - 还有未来么?
缘起 唐门教主上个月某天深夜写了一篇博客 --《编程的未来》,要我谈谈感想。 这也是最近软件工程师们聊得比较多的问题,上周,在上海的 “关东小磨” 和十多位 CSDN 博主聚会的时候,大家也稍微谈了一下这个话题,但是谈…...
从零开始搭建群众权益平台(二)
这篇文章我们要建立的群众权益维护平台需要提供用户注册、登录、提交和查看问题或建议的功能,并且支持电话短信登录。在这个过程中,我们需要存储用户的登录信息。 我们将使用Node.js和Express.js作为后端框架,MongoDB作为数据库,并且使用Twilio服务发送短信验证码来实现手…...
Mysql之数据备份
一.日志 1.MySQL 的日志默认保存位置为 /usr/local/mysql/data2.修改日志配置文件 vim /etc/my.cnf [mysqld] ##错误日志,用来记录当MySQL启动、停止或运行时发生的错误信息,默认已开启 log-error/usr/local/mysql/data/mysql_error.log #指定日志的…...

【数据库数据恢复】SQL Server数据表结构损坏的数据恢复案例
数据库故障&分析: SQL server数据库数据无法读取。 经过初检,发现SQL server数据库文件无法被读取的原因是因为底层File Record被截断为0,无法找到文件开头,数据表结构损坏。镜像文件的前面几十M空间和中间一部分空间被覆盖掉…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...

Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...