Python空间分析| 02 利用Python计算空间局部自相关(LISA)
局部空间自相关
import esda
import numpy as np
import pandas as pd
import libpysal as lps
import geopandas as gpd
import contextily as ctx
import matplotlib.pyplot as plt
from geopandas import GeoDataFrame
from shapely.geometry import Point
from pylab import figure, scatter, show
from splot.esda import moran_scatterplot
from esda.moran import Moran_Local
from splot.esda import plot_moran
from splot.esda import lisa_cluster
from splot.esda import plot_local_autocorrelation%matplotlib inlineroot_dir="/home/lighthouse/Learning/pysal/"gdf = gpd.read_file(root_dir+'data/.shp') # 读取数据
数据概况
gdf.columns.values #字段名
array(['CODE', 'COUNT', 'SUM_AREA', 'FIRST_ANAM', 'OID_', 'CODE_1','DATAFLAG', 'TOTPOP', 'TOTPOP_10K', 'RURPOP_10K', 'TOWNPOP_10','AGRPRODUCT', 'AGRLBR_10K', 'AGRSTOTGDP', 'FSTGDPRATE','SCNDGDPRAT', 'THRDGDPRAT', 'Province', 'geometry'], dtype=object)
gdf.head(1)
计算局部空间自相关LISA
- 第一产业占GDP比重
FSTGDPRATE为变量
ax=gdf.plot(figsize=(8,8),column="FSTGDPRATE",scheme='Quantiles', k=5, cmap='GnBu', legend=True,)
ax.set_axis_off()
计算空间权重矩阵
- pysal中的局部自相关计算中,要求权重矩阵的每一个元素都有邻接元素
y = gdf['FSTGDPRATE'].values
w = lps.weights.distance.Kernel.from_dataframe(gdf, fixed=False, k=15)
w.transform = 'r'
- Local Moral 计算
moran_loc = Moran_Local(y, w)
- Local Moral 散点图
fig, ax = moran_scatterplot(moran_loc, p=0.05)
ax.set_xlabel('FSTGDPRATE')
ax.set_ylabel('Spatial Lag of FSTGDPRATE')
plt.show()

- 聚集区的空间分布
lisa_cluster(moran_loc, gdf, p=0.05, figsize = (9,9))
plt.show()

-
根据上图结果可以看出,图中西部为高值聚集区,东部为低值聚集区。高值聚集区的第一产业产值占比比较高,而低值聚集区的第一产业产值占比比较低,这可以反映出区域的经济发展水平的空间异质性,区域发展不均衡。
-
绘制结果组合图
plot_local_autocorrelation(moran_loc, gdf, 'FSTGDPRATE')
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Vs9999Lu-1676603398739)(null)]
参考链接
- https://pysal.org/libpysal/
- https://pysal.org/esda/index.html
- https://github.com/pysal/esda
- http://pysal.org/notebooks/viz/splot/esda_morans_viz.html
- http://darribas.org/gds_scipy16/ipynb_md/04_esda.html
- https://splot.readthedocs.io/en/stable/users/tutorials/autocorrelation.html
相关文章:
Python空间分析| 02 利用Python计算空间局部自相关(LISA)
局部空间自相关 import esda import numpy as np import pandas as pd import libpysal as lps import geopandas as gpd import contextily as ctx import matplotlib.pyplot as plt from geopandas import GeoDataFrame from shapely.geometry import Point from pylab im…...
idea快捷编码:生成for循环、主函数、判空非空、生成单例方法、输出;自定义快捷表达式
前言 idea可根据输入的简单表达式进行识别,快速生成语句 常用的快捷编码:生成for循环、主函数、判空非空、生成单例方法、输出 自定义快捷表达式 博客地址:芒果橙的个人博客 【http://mangocheng.com】 一、idea默认的快捷表达式查看 Editor…...
【Spring】@Value注入配置文件 application.yml 中的值失败怎么办
本期目录一、 问题背景二、 问题原因三、 解决方法一、 问题背景 今天碰到的问题是用 Value 注解无法注入配置文件 application.yml 中的配置值。 检查过该类已经交给 Spring 容器管理了,即已经在类上加了 Configuration 和 ConfigurationProperties(prefix &quo…...
CleanMyMac清理工具软件功能优势介绍
CleanMyMac更新最新版本x4.12,完美适配新版系统macOS10.14,拥有全新的界面。CleanMyMac可以让您安全、智能地扫描和清理整个系统,删除大型未使用的文件,减少iPod库的大小,最精确的应用程序卸载,卸载不必要的…...
【面试题】对JS中的事件冒泡、事件捕获、事件委托的理解
大厂面试题分享 面试题库后端面试题库 (面试必备) 推荐:★★★★★地址:前端面试题库DOM事件流(event flow )存在三个阶段:事件捕获阶段、处于目标阶段、事件冒泡阶段。Dom标准事件流的触发的先…...
SAP 理解合并会计报表
随着企业集团的发展,集团内部会出现越来越多的公司;复杂的公司结构和复杂的集团内业务,使得集团内部管理困难重重,信息渠道严重失灵。除了内部管理的需要,企业还有义务向相关方提供详细的和及时的信息。ERP中的合并会计…...
Ubuntu 命令常用命令——定时启动程序
crontab -e 语法 crontab[ -u user ] file或 crontab[ -u user ] { -l | -r | -e }说明: crontab是用来让使用者在固定时间或固定间隔执行程序之用,换句话说,也就是类似使用者的时程表。 -U Lser 是指设定指定user的时程表,这个前提是你必…...
笔试题(十三):走迷宫
# 描述 # 定义一个二维数组 N*M ,如 5 5 数组下所示: # int maze[5][5] { # 0, 1, 0, 0, 0, # 0, 1, 1, 1, 0, # 0, 0, 0, 0, 0, # 0, 1, 1, 1, 0, # 0, 0, 0, 1, 0,}; # 它表示一个迷宫,其中的1表示墙壁,0表示可以走的路&#…...
Gradle相关的知识学习
这里有一套博客文章写的比较通俗易懂:https://www.jianshu.com/p/8e1ddd19083a...
SpringMVC的工作原理
SpringMVC的工作原理流程图 SpringMVC流程 1、 用户发送请求至前端控制器DispatcherServlet。 2、 DispatcherServlet收到请求调用HandlerMapping处理器映射器。 3、 处理器映射器找到具体的处理器(可以根据xml配置、注解进行查找),生成处理器对象及处理器拦截…...
问卷数据分析流程
文章目录一、数据合并1. 读取数据2. 数据预览二、数据清洗1. 检验ID是否重复,剔除ID重复项2. 剔除填写时间小于xx分钟的值3.处理 量表题 一直选一个选项的问题三、数据清洗1.1 将问卷单选题的选项code解码,还原成原来的选项1.2 自动获取单选题旧的选项列…...
【观察】Solidigm P44 Pro SSD评测:原厂品质+软硬兼施=性能怪兽
众所周知,目前SSD(固态硬盘)已取代HDD(机械硬盘)成为电脑中常见的存储设备,特别是在技术创新的持续推动下,如今SSD的速度和效率都在不断地提高,从SATA2 3GB发展到SATA3 6GBÿ…...
String对象的创建和比较
String类的概述 String类:代表字符串。 Java 程序中的所有字符串字面值(如 “abc” )都作 为此类的实例实现。 String是JDK中内置的一个类:java.lang.string 。 String表示字符串类型,属于引用数据类型,不…...
09 OpenCV图形检测
1 轮廓描边 cv2.findContours() 函数是OpenCV中用于寻找轮廓的函数之一。它可以用于在二值图像中查找并检测出所有的物体轮廓,以及计算出这些轮廓的各种属性,例如面积、周长、质心等。 cv2.findContours() 函数的语法如下: contours, hiera…...
解密Teradata与中国市场“分手”背后的原因!国产数据库能填补空白吗?
2月15日,西方的情人节刚刚过去一天,国内IT行业就爆出一个大瓜。 继Adobe、甲骨文、Tableau、Salesforce之后,又一个IT巨头要撤离中国市场。 Teradata天睿公司官宣与中国市场“分手”,结束在中国的直接运营。目前,多家…...
Bernstein-Vazirani算法
B-V算法 (1) 问题描述 给定布尔函数f:{0,1}n→0,1f:{\left\{ {0,1} \right\}^n} \to{0,1}f:{0,1}n→0,1, 函数fff的值是由输入比特串xxx和确定的比特串sss做模2意义下的内积:f(x)x⋅s(mod2),f\left( x \right) x \cdot s\left( {\bmod 2} \right),f(x)x⋅s(mod2),…...
华为OD机试 - 相对开音节 | 备考思路,刷题要点,答疑 【新解法】
最近更新的博客 【新解法】华为OD机试 - 关联子串 | 备考思路,刷题要点,答疑,od Base 提供【新解法】华为OD机试 - 停车场最大距离 | 备考思路,刷题要点,答疑,od Base 提供【新解法】华为OD机试 - 任务调度 | 备考思路,刷题要点,答疑,od Base 提供【新解法】华为OD机试…...
MyBatis
一、MyBatis环境搭建创建工程启动idea开发工具,选择工具栏中的“file”--“new”--“project”选项弹出“new project”对话框,编辑项目名称 选择maven项目,项目路径 单击 create 创建即可。引入相关依赖<dependencies><dependency&…...
良好的作息表
今天给大家带来“传说中”的“世界上最健康的作息时间表”(仅供参考),随时提醒自己吧,毕竟身体可是自己的哦。 7:30 起床:英国威斯敏斯特大学的研究人员发现,那些在早上5:22-7:21分起床的人,其血液中有一种能引起心脏病…...
【郭东白架构课 模块一:生存法则】01|模块导学:是什么在影响架构活动的成败?
你好,我是郭东白。这节课是我们模块一的导入部分,我会先来介绍模块的主要内容,以及为什么我要讲生存法则这个话题。 一名软件架构师要为相对复杂的业务制定,并且引导实施一个结构化的软件方案。这个发现最终方案和推动实施的过程&…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

