当前位置: 首页 > news >正文

基于CNN卷积神经网络的调制信号识别算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

1. 卷积神经网络(CNN)

2. 调制信号识别

3.实现过程

5.算法完整程序工程


1.算法运行效果图预览

 

 

2.算法运行软件版本

MATLAB2022A

3.部分核心程序

% 构建调制类型分类的卷积神经网络模型modClassNet
modClassNet = [imageInputLayer([1 spf 2], 'Normalization', 'none', 'Name', 'Input Layer')convolution2dLayer(filterSize, 16*netWidth, 'Padding', 'same', 'Name', 'CNN1')batchNormalizationLayer('Name', 'BN1')reluLayer('Name', 'ReLU1')maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool1')convolution2dLayer(filterSize, 24*netWidth, 'Padding', 'same', 'Name', 'CNN2')batchNormalizationLayer('Name', 'BN2')reluLayer('Name', 'ReLU2')maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool2')convolution2dLayer(filterSize, 32*netWidth, 'Padding', 'same', 'Name', 'CNN3')batchNormalizationLayer('Name', 'BN3')reluLayer('Name', 'ReLU3')maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool3')convolution2dLayer(filterSize, 48*netWidth, 'Padding', 'same', 'Name', 'CNN4')batchNormalizationLayer('Name', 'BN4')reluLayer('Name', 'ReLU4')maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool4')convolution2dLayer(filterSize, 64*netWidth, 'Padding', 'same', 'Name', 'CNN5')batchNormalizationLayer('Name', 'BN5')reluLayer('Name', 'ReLU5')maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool5')convolution2dLayer(filterSize, 96*netWidth, 'Padding', 'same', 'Name', 'CNN6')batchNormalizationLayer('Name', 'BN6')reluLayer('Name', 'ReLU6')convolution2dLayer(filterSize, 128*netWidth, 'Padding', 'same', 'Name', 'CNN7')batchNormalizationLayer('Name', 'BN7')reluLayer('Name', 'ReLU7')averagePooling2dLayer([1 ceil(spf/32)], 'Name', 'AP1')fullyConnectedLayer(numModTypes, 'Name', 'FC1')softmaxLayer('Name', 'SoftMax')classificationLayer('Name', 'Output') ]
% 分析网络结构并展示网络的层次结构
analyzeNetwork(modClassNet)% 最大训练轮数,网络将在此轮数结束后停止训练
maxEpochs           = 15;
% 每次迭代的小批量样本数量
miniBatchSize       = 256;
% 每隔多少次迭代进行一次验证,用于观察验证集上的性能
validationFrequency = 20;
% 设置训练选项,包括优化算法(adam)、学习率、训练轮数、小批量样本数量、是否每轮迭代都重新打乱数据、是否绘制训练进度图、是否显示训练过程信息、验证数据和验证频率、学习率衰减策略等options = trainingOptions('adam', ...'InitialLearnRate',1e-2, ...'MaxEpochs',maxEpochs, ...'MiniBatchSize',miniBatchSize, ...'Shuffle','every-epoch', ...'Plots','training-progress', ...'Verbose',false, ...'ValidationData',{rxValidation,rxValidationLabel}, ...'ValidationFrequency',validationFrequency, ...'LearnRateSchedule', 'piecewise', ...'LearnRateDropPeriod', 9, ...'LearnRateDropFactor', 0.1, ...'ExecutionEnvironment', 'multi-gpu');% 使用训练数据集rxTraining和标签rxTrainingLabel,利用设置的模型modClassNet和训练选项options训练得到调制类型分类的神经网络模型trainedNet0SNR_v7trainedNet0SNR_v7 = trainNetwork(rxTraining,rxTrainingLabel,modClassNet,options);
0030

4.算法理论概述

        在无线通信系统中,调制信号的识别是一项重要的任务。通过识别接收到的信号的调制方式,可以对信号进行解调和解码,从而实现正确的数据传输和通信。卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,在图像和信号处理领域取得了显著的成功。

1. 卷积神经网络(CNN)

       CNN是一种深度学习模型,主要用于图像处理和模式识别任务。其核心原理是使用卷积层、池化层和全连接层来提取特征和进行分类。以下是CNN中常用的数学原理:

       卷积层: 卷积层通过滤波器(也称为卷积核)来提取图像或信号的特征。卷积操作通过将滤波器与输入图像或信号的局部区域进行元素相乘,并求和得到输出特征图。

       池化层: 池化层用于减小特征图的尺寸,并降低计算复杂度。常见的池化操作有最大池化和平均池化。 

       全连接层: 全连接层将池化层输出的特征图映射到具体的分类结果,常用于分类任务。

2. 调制信号识别

        调制信号识别任务是将接收到的信号进行分类,确定其调制方式。通常,调制信号可以表示为复数形式:

其中,$A$为信号的幅度,$f_c$为信号的载频频率,$\phi(t)$为信号的相位。 

3.实现过程

1. 数据预处理

        首先,需要准备用于训练和测试的调制信号数据集。数据预处理包括信号采样、归一化、分割成时域序列,并将其转换为CNN网络的输入格式。

2. 搭建CNN网络

        构建卷积神经网络模型,可以根据任务的复杂性和需求选择合适的网络结构。一般来说,包含若干卷积层、池化层、全连接层和输出层。

3. 训练CNN模型

       使用准备好的调制信号数据集,对CNN模型进行训练。训练过程中需要定义损失函数(通常使用交叉熵损失函数)和优化算法(如随机梯度下降),通过反向传播算法不断更新模型的参数,使其逐渐收敛到最优状态。

4. 测试和验证

       训练完成后,使用测试集对模型进行验证和评估。计算准确率、精确度、召回率等指标来评估模型的性能。

5. 调制信号识别

        最终,将训练好的CNN模型用于调制信号的识别。通过将接收到的信号输入CNN模型,得到分类结果,确定信号的调制方式。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于CNN卷积神经网络的调制信号识别算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 1. 卷积神经网络(CNN) 2. 调制信号识别 3.实现过程 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022A 3.部分核心程序 % 构建调制类型…...

正则,JS:this,同步异步,原型链笔记整理

一 正则表达式 正则表达式(regular expression)是一种表达文本模式(即字符串结构)的方法,有点像字符串的模板,常常用来按照“给定模式”匹配文本 正则表达式可以用于以下常见操作: 匹配&…...

【NOIP】小鱼的数字游戏题解

author:&Carlton tag:递归,栈 topic:【NOIP】小鱼的数字游戏题解 language:C website:洛谷 date:2023年7月29日 目录 我的题解思路 优化 别人的优秀思路: 我的题解思路 题…...

算法的时间复杂度、空间复杂度如何比较?

目录 一、时间复杂度BigO 大O的渐进表示法: 例题一: 例题2: 例题3:冒泡排序的时间复杂度 例题4:二分查找的时间复杂度 书写对数的讲究: 例题5: 实例6: 利用时间复杂度解决编…...

We are the Lights 2023牛客暑期多校训练营4-L

登录—专业IT笔试面试备考平台_牛客网 题目大意&#xff1a;有n*m盏灯&#xff0c;q次操作&#xff0c;每次可以将一整行或一整列的等打开或关闭 1<n,m<1e6;1<q<1e6 思路&#xff1a;对于同一行或者同一列来说&#xff0c;只要最后一次操作时开或者关&#xff0…...

ant-design-vue中table组件使用customRender渲染v-html

ant-design-vue遇到table中列表数据需要高亮渲染 1、customRender可以使用&#xff0c;但是使用v-html发现不生效还报错 const columns [title: name,dataIndex: name,customRender: (val, row) > {return <span v-html{val}></span>} ]2、customeRender函数…...

若依框架实现后端防止用户重复点击

若依框架实现后端防止用户重复点击 基于自定义注解、切面、Redis实现 1. 添加自定义注解&#xff1a; 代码放置位置&#xff1a;com/ruoyi/common/annotation/RepeatClick.java time: 时间默认0; unit&#xff1a;单位默认 秒; key: 默认空字符串 package com.ruoyi.fra…...

PCA对手写数字数据集的降维

手写数字的数据集结构为(42000, 784),用KNN跑一次半小时,得到准确率在96.6%上下,用随机森林跑一次12秒,准确率在93.8%,虽然KNN效果好,但由于数据量太大,KNN计算太缓慢,所以我们不得不选用随机森林。我们使用了各种技术对手写数据集进行特征选择,最后使用嵌入 法Select…...

Python入门【变量的作用域(全局变量和局部变量)、参数的传递、浅拷贝和深拷贝、参数的几种类型 】(十一)

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱敲代码的小王&#xff0c;CSDN博客博主,Python小白 &#x1f4d5;系列专栏&#xff1a;python入门到实战、Python爬虫开发、Python办公自动化、Python数据分析、Python前后端开发 &#x1f4e7;如果文章知识点有错误…...

下级平台级联安防视频汇聚融合EasyCVR平台,层级显示不正确是什么原因?

视频汇聚平台安防监控EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有GB28181、RTSP/Onvif、RTMP等&#xff0c;以及厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等&#xff0c;能对外分发RTSP、RTMP、FLV、HLS、WebRTC等…...

vue : 无法加载文件 C:\Users\jianfei\AppData\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本。...

背景 在新电脑上配置vue环境 PS E:\CODE_PROJ\myvue\vue23\P61_使用脚手架\vue_test> npm install -g vue/cli npm WARN deprecated source-map-url0.4.1: See https://github.com/lydell/source-map-url#deprecated npm WARN deprecated urix0.1.0: Please see https://git…...

godot引擎c++源码深度解析系列二

记录每次研究源码的突破&#xff0c;今天已经将打字练习的功能完成了一个基本模型&#xff0c;先来看下运行效果。 godot源码增加打字练习的demo 这个里面需要研究以下c的控件页面的开发和熟悉&#xff0c;毕竟好久没有使用c了&#xff0c;先来看以下代码吧。 //第一排 显示文本…...

专才or 通才

前言 不知道大家有没有这样的感觉&#xff0c;现在的工作专业化程度越来越高&#xff0c;而且是细分方向越来越小。IT领域分到你是计算里面的数据库或者了流式计算引擎&#xff0c;或者是协议存储还是KV存储引擎。 专业化的优势 专业化的程度带来了一个好处就是你在这个领域…...

【小白必看】Python爬虫实战之批量下载女神图片并保存到本地

文章目录 前言运行结果部分图片1. 引入所需库2. 发送请求获取网页内容3. 解析网页内容并提取图片地址和名称4. 下载并保存图片完整代码关键代码讲解 结束语 前言 爬取网络上的图片是一种常见的需求&#xff0c;它可以帮助我们批量下载大量图片并进行后续处理。本文将介绍如何使…...

道本科技||全面建立国有企业合规管理体系

为全面深化国有企业法治建设&#xff0c;不断加强合规管理&#xff0c;防控合规风险&#xff0c;保障企业稳健发展&#xff0c;近日&#xff0c;市国资委印发《常州市市属国有企业合规管理办法&#xff08;试行&#xff09;》&#xff08;以下简称《办法》&#xff09;&#xf…...

CentOS 8上安装和配置Redis

在本篇博客中&#xff0c;我们将演示如何在CentOS 8上安装和配置Redis。我们将首先安装Redis&#xff0c;然后配置Redis以设置密码并允许公开访问。 步骤 1&#xff1a;安装Redis 首先&#xff0c;更新软件包列表&#xff1a; sudo yum update安装Redis&#xff1a; sudo yum …...

西北乱跑娃 -- CSS动态旋转果冻效果

<!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>旋转果冻</title> <style> #myDIV {margin: 250px;width: 250px;height: 250px;background: orange;position: relative;font-size: 20px;animation: anima…...

解决安装office出现1402错误和注册表编辑器无法设置安全性错误

写在前面 可能是由于之前的office没有卸载干净&#xff0c;看了很多文章&#xff0c;也有的说是使用了Windows Installer Clean Up卸载office的缘故&#xff0c;最后导致的结果是出现了再次安装office时出现了1402错误&#xff0c;而在解决1402错误的过程中&#xff0c;修改所…...

Jmeter接口自动化生成测试报告html格式

jmeter自带执行结果查看的插件&#xff0c;但是需要在jmeter工具中才能查看&#xff0c;如果要向领导提交测试结果&#xff0c;不够方便直观。 笔者刚做了这方面的尝试&#xff0c;总结出来分享给大家。 这里需要用到ant来执行测试用例并生成HTML格式测试报告。 一、ant下载安…...

移动IP的原理

目的 使得移动主机在各网络之间漫游时&#xff0c;仍然能保持其原来的IP地址不变 工作步骤 代理发现与注册 主机A&#xff1a;主机A移动到外地网络后&#xff0c;通过“代理发现协议”&#xff0c;与外地代理建立联系&#xff0c;并从外地代理获得一个转交地址&#xff0c;…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...