当前位置: 首页 > news >正文

数值线性代数: 共轭梯度法

本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。

零、预修

0.1 LU分解

\boldsymbol{A}\in \mathbb{R}^{n\times n},若对于k\in \left [ 1,n-1 \right ],均有\left | \boldsymbol{A}\left ( 1:k,1:k \right ) \right |\neq 0,则存在下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n}和上三角矩阵\boldsymbol{U} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{U}

\boldsymbol{A}\in \mathbb{R}^{n\times n},若对于k\in \left [ 1,n \right ],均有\left | \boldsymbol{A}\left ( 1:k,1:k \right ) \right |\neq 0,则存在唯一的下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n}和上三角矩阵\boldsymbol{U} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{U},并且\left |A \right |=U\left ( 1,1 \right )U\left ( 2,2 \right )\cdots U\left ( n,n \right )

0.2 Cholesky分解

\boldsymbol{A}\in \mathbb{R}^{n\times n}对称正定,则存在一个对角元均为正数的下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{L}^{T}

一、 总论:迭代法求解线性方程组的一般思路

对于非奇异矩阵\boldsymbol{A}\in \mathbb{R}^{n\times n}\boldsymbol{b}\in \mathbb{R}^{n},使用迭代法求解线性方程组\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}过程中,一般需要以下流程进行:

  1. 给定一个初始向量\boldsymbol{x}_{0}
  2. 构造一个递推公式\boldsymbol{x}_{k+1}=\boldsymbol{f}\left ( \boldsymbol{x}_{k},\boldsymbol{A},\mathbf{b} \right )
  3. 不断递推\boldsymbol{x}_{k+1},使其近似收敛于\boldsymbol{x}_{*}

下表列出了若干迭代算法的迭代公式。

方法\boldsymbol{A}迭代公式备注
Jacobi迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{x}_{k}=\boldsymbol{D}^{-1}\left ( \boldsymbol{L}+\boldsymbol{U} \right ) \boldsymbol{x}_{k-1}+\boldsymbol{D}^{-1}\boldsymbol{b}
Gausss-Seidel迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{x}_{k}=\left ( \boldsymbol{D}-\boldsymbol{L }\right )^{-1}\boldsymbol{U}\boldsymbol{x}_{k-1}+\left ( \boldsymbol{D}-\boldsymbol{L} \right )^{-1}b
SOR迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{L}_{\omega }=\left ( \boldsymbol{D}-\omega \boldsymbol{L}\right )^{-1} \left ( \left ( 1-\omega \right )\boldsymbol{D}+\omega \boldsymbol{U} \right )\\ \boldsymbol{x}_{k+1}= \boldsymbol{L}_{\omega }\boldsymbol{x}_{k}+\omega \left ( \boldsymbol{D}-\omega \boldsymbol{L} \right )^{-1}\boldsymbol{b}
Steepest Descent对称正定\boldsymbol{r}_{k}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}\\ \boldsymbol{p}_{k}=\boldsymbol{r}_{k}\\ \alpha_{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{p}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha _{k}\boldsymbol{p}_{k}
Conjugate Gradient对称正定

k=1

     \boldsymbol{r}_{k}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}\\ \boldsymbol{p}_{k}=\boldsymbol{r}_{k}\\ \alpha_{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{p}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha _{k}\boldsymbol{p}_{k}

k>1

    \alpha _{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha \boldsymbol{p}_{k} \\ \boldsymbol{r}_{k+1}=\boldsymbol{r}_{k}-\alpha _{k}\boldsymbol{A}\boldsymbol{p}_{k} \\ \beta _{k}=\frac{\boldsymbol{r}_{k+1}^{T}\boldsymbol{r}_{k+1}}{\boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k}}\\ \boldsymbol{p}_{k+1}=\boldsymbol{r}_{k+1}+\beta _{k}\boldsymbol{p}_{k}

二、Projection Method

投影法将线性方程组求解问题转换成了最优值求解问题,是求解线性方程组的一大类方法。

在投影法中,令\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x},构造列满秩矩阵\mathcal{K}\in \mathbb{R}^{n\times m}\mathcal{L}\in \mathbb{R}^{n\times m},寻找\boldsymbol{\tilde{x}}\in\mathcal{K},满足Petrov-Galerkin条件,即\forall \boldsymbol{y}\in \mathcal{L},均有\mathcal{L}^{T}\left ( \boldsymbol{b}-\boldsymbol{A}\boldsymbol{\tilde{x}} \right )=\boldsymbol{0}\mathcal{K}称为搜索空间,\mathcal{L}称为约束空间。若\mathcal{L}=\mathcal{K}时,称为正投影算法,否则称为斜投影算法

三、Krylov Subspace Method

Krylov子空间法本质上也是一种投影法,其核心思想是在更小维度的Krylov子空间内寻找满足精度要求的近似解。即令\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}_{0},构造了mKrylov子空间\mathcal{K}\left ( \boldsymbol{A},\boldsymbol{r}_{0} \right )=span\left ( \boldsymbol{r}_{0} , \boldsymbol{A}\boldsymbol{r}_{0}, \boldsymbol{A}^{2} \boldsymbol{r}_{0},\cdots ,\boldsymbol{A}^{m-1}\boldsymbol{r}_{0} \right ),使得\mathcal{L}^{T}\left (\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x} \right )=\boldsymbol{0}

选择不同的\mathcal{L},就对应不同的Krylov子空间法

3.1 Steepest Descent Method

3.2 Hestenes-Stiefel Conjugate Gradient Method

3.3 Preconditioned Conjugate Gradient

参考书籍

Golub G H , Loan C F V .Matrix Computations.Johns Hopkins University Press,1996.

Ford W .Numerical Linear Algebra with Applications using MATLAB. 2014.

徐树方. 数值线性代数(第二版).  北京大学出版社, 2010.

参考文献

Hestenes M R , Stiefel E L .Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards (United States), 1952. 

相关文章:

数值线性代数: 共轭梯度法

本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。 零、预修 0.1 LU分解 设,若对于,均有,则存在下三角矩阵和上三角矩阵,使得。 设,若对于,均有,则存在唯一的下三…...

【JVM】详解对象的创建过程

文章目录 1、创建对像的几种方式1、new关键字2、反射3、clone4、反序列化 2、创建过程步骤 1、检查类是否已经被加载步骤 2、 为对象分配内存空间1、指针碰撞针对指针碰撞线程不安全,有两种方案: 2、空闲列表选择哪种分配方式 步骤3、将内存空间初始化为…...

华纳云:ubuntu下如何搭建nfs服务

在Ubuntu下搭建NFS(Network File System)服务,可以实现网络文件共享。以下是在Ubuntu上搭建NFS服务的步骤: 安装NFS服务器和客户端软件: 打开终端,并使用以下命令安装NFS服务器和客户端软件: sudo apt-get update s…...

HCIA实验二

实验要求: 1.R2为ISP,只能配置IP 2.R1-R2之间为HDLC封装 3.R2-R3之间为PPP封装,pap认证,R2为主认证方 4.R2-R4之间为PPP封装,chap认证,R2为主认证方 5.R1、R2、R3构建MGRE,仅R1的IP地址固定…...

stm32 舵机 cubemx

文章目录 前言一、cubemx配置二、代码1.serve.c2.serve.h3.主函数 总结 前言 stm32对舵机进行控制,很简单直接一个pwm就可以实现 pwm的周期是50HZ占空比分别对应 一个0.5ms的高电平对应于0度 一个1.5ms的高电平对应于90度 一个2.5ms的高电平对应于180度 因此&#…...

无涯教程-jQuery - Spinner组件函数

Widget Spinner 函数可与JqueryUI中的窗口小部件一起使用。Spinner提供了一种从一组中选择一个值的快速方法。 Spinner - 语法 $( "#menu" ).selectmenu(); Spinner - 示例 以下是显示Spinner用法的简单示例- <!doctype html> <html lang"en"…...

Python 有趣的模块之pynupt——通过pynput控制鼠标和键盘

Python 有趣的模块之pynupt ——通过pynput控制鼠标和键盘 文章目录 Python 有趣的模块之pynupt ——通过pynput控制鼠标和键盘1️⃣简介2️⃣鼠标控制与移动3️⃣键盘控制与输入4️⃣结语&#x1f4e2; 1️⃣简介 &#x1f680;&#x1f680;&#x1f680;学会控制鼠标和键盘是…...

docker基于centos7镜像安装python3.7.9

下载centos7镜像 docker pull centos&#xff1a;centos7 启动容器centos-python-3.7 docker run -itd --name centos-python-3.7 -p 60021:22 --privileged centos:centos7 /usr/sbin/init 进入容器 docker exec -it centos-python-3.7 /bin/bash centos7环境下安装python3.7.…...

JavaScript中的switch语句

switch语句和if语句一样&#xff0c;同样是运用于条件循环中&#xff1b; 下面例子我们用switch实现 例如如果今天是周一就学习HTML&#xff0c;周二学习CSS和JavaScript&#xff0c;周三学习vue&#xff0c;周四&#xff0c;周五学习node.js&#xff0c;周六周日快乐玩耍&…...

Jquery笔记

DOM对象通过jquery获取 所有的代码都是基于引入jquery.js文件 var mydiv $(#div);//直接获取到DOM对象元素id var mydiv$(.div)&#xff1b;//通过class获取DOM对象&#xff0c;如果有同名class只会获取第一个 var mysapn$(span);//通过元素的标签名获取DOM对象 var divarr$(…...

【C++】优先级队列的基本概念以及其模拟实现

文章目录 补充知识&#xff1a;仿函数一、优先级队列&#xff1a;1.引入2.介绍 二、priority_queue的模拟实现1.大体框架2.私有成员函数&#xff1a;1.向下调整&#xff08;AdjustDown&#xff09;2.向上调整&#xff08;AdjustUp&#xff09; 3.公有成员函数1大小&#xff08;…...

TextClamp for Vue3.0(Vue3.0的文本展开收起组件)

呦&#xff01;大家好&#xff0c;好久没有更新博客了&#xff0c;最近实现了一个一直想自己完成的一个东西&#xff0c;就是文本的展开收起组件&#xff0c;以前项目需要用到&#xff0c;自己实现一个又太繁琐&#xff0c;所以那个时候都是用的别人的轮子&#xff0c;现在自己…...

区间预测 | MATLAB实现VAR向量自回归时间序列区间预测

区间预测 | MATLAB实现VAR向量自回归时间序列区间预测 目录 区间预测 | MATLAB实现VAR向量自回归时间序列区间预测预测效果基本介绍程序设计参考资料预测效果 基本介绍 区间预测 | MATLAB实现VAR向量自回归时间序列区间预测 VAR(Vector Autoregression)模型是一种广泛应用于时…...

在 Windows 上搭建 NTP 服务器

文章目录 一、基础环境二、适用场景三、操作步骤四、常用的NTP服务器五、参考资料 版权声明&#xff1a;本文为博主原创文章&#xff0c;于2023年7月30日首发于CSDN&#xff0c;转载请附上原文出处链接和本声明。本文链接&#xff1a;https://blog.csdn.net/u011046671 一、基础…...

应急响应经典案例-FTP 暴力破解

应急响应经典案例-FTP 暴力破解 应急场景日志分析应急处理措施 应急场景 从昨天开始&#xff0c;网站响应速度变得缓慢&#xff0c;网站服务器登录上去非常卡&#xff0c;重启服务器就能保证一段时间的正常访问&#xff0c;网站响应状态时而飞快时而缓慢&#xff0c;多数时间是…...

41. linux通过yum安装postgresql

文章目录 1.下载安装包2.关闭内置PostgreSQL模块:3.安装postgresql服务:4.初始化postgresql数据库:5.设置开机自启动:6.启动postgresql数据库7.查看postgresql进程8.通过netstat命令或者lsof 监听默认端口54329.使用find命令查找了一下postgresql.conf的配置位置10.修改postgre…...

SpringBoot启动流程及自动配置

SpringBoot启动流程源码&#xff1a; 1、启动SpringBoot启动类SpringbootdemoApplication中的main方法。 SpringBootApplication public class SpringbootdemoApplication {public static void main(String[] args) {SpringApplication.run(SpringbootdemoApplication.class, …...

【Linux】进程轻松入门

目录 一&#xff0c; 冯* 诺依曼体系结构 1&#xff0c;存储结构 ​编辑 二&#xff0c; 操作系统 1&#xff0c;概念 2&#xff0c;设计OS的目的 3&#xff0c;定位 4&#xff0c;如何理解 "管理" 5&#xff0c; 总结 三&#xff0c;进程 1. 概念 那么…...

【使用时空RBF-NN进行非线性系统识别】实现了 RBF、分数 RBF 和时空 RBF 神经网络,用于非线性系统识别研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

Tomcat 安装配置教程及成功后,启动失败报错解决方案

解决方案 我的报错原因是因为我的JDK是1.8的而我的Tomcat是10版本的&#xff0c;可能是因为版本原因吧&#xff0c;我重新装了Tomcat 9就可以启动成功了&#xff01; 简单说下安装的时候需要注意哪些步骤吧 今天我在安装tomcat10的时候&#xff0c;安装成功后&#xff0c;启…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...