当前位置: 首页 > news >正文

数值线性代数: 共轭梯度法

本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。

零、预修

0.1 LU分解

\boldsymbol{A}\in \mathbb{R}^{n\times n},若对于k\in \left [ 1,n-1 \right ],均有\left | \boldsymbol{A}\left ( 1:k,1:k \right ) \right |\neq 0,则存在下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n}和上三角矩阵\boldsymbol{U} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{U}

\boldsymbol{A}\in \mathbb{R}^{n\times n},若对于k\in \left [ 1,n \right ],均有\left | \boldsymbol{A}\left ( 1:k,1:k \right ) \right |\neq 0,则存在唯一的下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n}和上三角矩阵\boldsymbol{U} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{U},并且\left |A \right |=U\left ( 1,1 \right )U\left ( 2,2 \right )\cdots U\left ( n,n \right )

0.2 Cholesky分解

\boldsymbol{A}\in \mathbb{R}^{n\times n}对称正定,则存在一个对角元均为正数的下三角矩阵\boldsymbol{L} \in\mathbb{R}^{n\times n},使得\boldsymbol{A}=\boldsymbol{L}\boldsymbol{L}^{T}

一、 总论:迭代法求解线性方程组的一般思路

对于非奇异矩阵\boldsymbol{A}\in \mathbb{R}^{n\times n}\boldsymbol{b}\in \mathbb{R}^{n},使用迭代法求解线性方程组\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}过程中,一般需要以下流程进行:

  1. 给定一个初始向量\boldsymbol{x}_{0}
  2. 构造一个递推公式\boldsymbol{x}_{k+1}=\boldsymbol{f}\left ( \boldsymbol{x}_{k},\boldsymbol{A},\mathbf{b} \right )
  3. 不断递推\boldsymbol{x}_{k+1},使其近似收敛于\boldsymbol{x}_{*}

下表列出了若干迭代算法的迭代公式。

方法\boldsymbol{A}迭代公式备注
Jacobi迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{x}_{k}=\boldsymbol{D}^{-1}\left ( \boldsymbol{L}+\boldsymbol{U} \right ) \boldsymbol{x}_{k-1}+\boldsymbol{D}^{-1}\boldsymbol{b}
Gausss-Seidel迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{x}_{k}=\left ( \boldsymbol{D}-\boldsymbol{L }\right )^{-1}\boldsymbol{U}\boldsymbol{x}_{k-1}+\left ( \boldsymbol{D}-\boldsymbol{L} \right )^{-1}b
SOR迭代非奇异\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{U} \\ \boldsymbol{L}_{\omega }=\left ( \boldsymbol{D}-\omega \boldsymbol{L}\right )^{-1} \left ( \left ( 1-\omega \right )\boldsymbol{D}+\omega \boldsymbol{U} \right )\\ \boldsymbol{x}_{k+1}= \boldsymbol{L}_{\omega }\boldsymbol{x}_{k}+\omega \left ( \boldsymbol{D}-\omega \boldsymbol{L} \right )^{-1}\boldsymbol{b}
Steepest Descent对称正定\boldsymbol{r}_{k}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}\\ \boldsymbol{p}_{k}=\boldsymbol{r}_{k}\\ \alpha_{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{p}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha _{k}\boldsymbol{p}_{k}
Conjugate Gradient对称正定

k=1

     \boldsymbol{r}_{k}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}\\ \boldsymbol{p}_{k}=\boldsymbol{r}_{k}\\ \alpha_{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{p}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha _{k}\boldsymbol{p}_{k}

k>1

    \alpha _{k}=\frac{\boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k}}{\boldsymbol{p}_{k}^{T}\boldsymbol{A}\boldsymbol{p}_{k}}\\ \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha \boldsymbol{p}_{k} \\ \boldsymbol{r}_{k+1}=\boldsymbol{r}_{k}-\alpha _{k}\boldsymbol{A}\boldsymbol{p}_{k} \\ \beta _{k}=\frac{\boldsymbol{r}_{k+1}^{T}\boldsymbol{r}_{k+1}}{\boldsymbol{r}_{k}^{T}\boldsymbol{r}_{k}}\\ \boldsymbol{p}_{k+1}=\boldsymbol{r}_{k+1}+\beta _{k}\boldsymbol{p}_{k}

二、Projection Method

投影法将线性方程组求解问题转换成了最优值求解问题,是求解线性方程组的一大类方法。

在投影法中,令\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x},构造列满秩矩阵\mathcal{K}\in \mathbb{R}^{n\times m}\mathcal{L}\in \mathbb{R}^{n\times m},寻找\boldsymbol{\tilde{x}}\in\mathcal{K},满足Petrov-Galerkin条件,即\forall \boldsymbol{y}\in \mathcal{L},均有\mathcal{L}^{T}\left ( \boldsymbol{b}-\boldsymbol{A}\boldsymbol{\tilde{x}} \right )=\boldsymbol{0}\mathcal{K}称为搜索空间,\mathcal{L}称为约束空间。若\mathcal{L}=\mathcal{K}时,称为正投影算法,否则称为斜投影算法

三、Krylov Subspace Method

Krylov子空间法本质上也是一种投影法,其核心思想是在更小维度的Krylov子空间内寻找满足精度要求的近似解。即令\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}_{0},构造了mKrylov子空间\mathcal{K}\left ( \boldsymbol{A},\boldsymbol{r}_{0} \right )=span\left ( \boldsymbol{r}_{0} , \boldsymbol{A}\boldsymbol{r}_{0}, \boldsymbol{A}^{2} \boldsymbol{r}_{0},\cdots ,\boldsymbol{A}^{m-1}\boldsymbol{r}_{0} \right ),使得\mathcal{L}^{T}\left (\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x} \right )=\boldsymbol{0}

选择不同的\mathcal{L},就对应不同的Krylov子空间法

3.1 Steepest Descent Method

3.2 Hestenes-Stiefel Conjugate Gradient Method

3.3 Preconditioned Conjugate Gradient

参考书籍

Golub G H , Loan C F V .Matrix Computations.Johns Hopkins University Press,1996.

Ford W .Numerical Linear Algebra with Applications using MATLAB. 2014.

徐树方. 数值线性代数(第二版).  北京大学出版社, 2010.

参考文献

Hestenes M R , Stiefel E L .Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards (United States), 1952. 

相关文章:

数值线性代数: 共轭梯度法

本文总结线性方程组求解的相关算法,特别是共轭梯度法的原理及流程。 零、预修 0.1 LU分解 设,若对于,均有,则存在下三角矩阵和上三角矩阵,使得。 设,若对于,均有,则存在唯一的下三…...

【JVM】详解对象的创建过程

文章目录 1、创建对像的几种方式1、new关键字2、反射3、clone4、反序列化 2、创建过程步骤 1、检查类是否已经被加载步骤 2、 为对象分配内存空间1、指针碰撞针对指针碰撞线程不安全,有两种方案: 2、空闲列表选择哪种分配方式 步骤3、将内存空间初始化为…...

华纳云:ubuntu下如何搭建nfs服务

在Ubuntu下搭建NFS(Network File System)服务,可以实现网络文件共享。以下是在Ubuntu上搭建NFS服务的步骤: 安装NFS服务器和客户端软件: 打开终端,并使用以下命令安装NFS服务器和客户端软件: sudo apt-get update s…...

HCIA实验二

实验要求: 1.R2为ISP,只能配置IP 2.R1-R2之间为HDLC封装 3.R2-R3之间为PPP封装,pap认证,R2为主认证方 4.R2-R4之间为PPP封装,chap认证,R2为主认证方 5.R1、R2、R3构建MGRE,仅R1的IP地址固定…...

stm32 舵机 cubemx

文章目录 前言一、cubemx配置二、代码1.serve.c2.serve.h3.主函数 总结 前言 stm32对舵机进行控制,很简单直接一个pwm就可以实现 pwm的周期是50HZ占空比分别对应 一个0.5ms的高电平对应于0度 一个1.5ms的高电平对应于90度 一个2.5ms的高电平对应于180度 因此&#…...

无涯教程-jQuery - Spinner组件函数

Widget Spinner 函数可与JqueryUI中的窗口小部件一起使用。Spinner提供了一种从一组中选择一个值的快速方法。 Spinner - 语法 $( "#menu" ).selectmenu(); Spinner - 示例 以下是显示Spinner用法的简单示例- <!doctype html> <html lang"en"…...

Python 有趣的模块之pynupt——通过pynput控制鼠标和键盘

Python 有趣的模块之pynupt ——通过pynput控制鼠标和键盘 文章目录 Python 有趣的模块之pynupt ——通过pynput控制鼠标和键盘1️⃣简介2️⃣鼠标控制与移动3️⃣键盘控制与输入4️⃣结语&#x1f4e2; 1️⃣简介 &#x1f680;&#x1f680;&#x1f680;学会控制鼠标和键盘是…...

docker基于centos7镜像安装python3.7.9

下载centos7镜像 docker pull centos&#xff1a;centos7 启动容器centos-python-3.7 docker run -itd --name centos-python-3.7 -p 60021:22 --privileged centos:centos7 /usr/sbin/init 进入容器 docker exec -it centos-python-3.7 /bin/bash centos7环境下安装python3.7.…...

JavaScript中的switch语句

switch语句和if语句一样&#xff0c;同样是运用于条件循环中&#xff1b; 下面例子我们用switch实现 例如如果今天是周一就学习HTML&#xff0c;周二学习CSS和JavaScript&#xff0c;周三学习vue&#xff0c;周四&#xff0c;周五学习node.js&#xff0c;周六周日快乐玩耍&…...

Jquery笔记

DOM对象通过jquery获取 所有的代码都是基于引入jquery.js文件 var mydiv $(#div);//直接获取到DOM对象元素id var mydiv$(.div)&#xff1b;//通过class获取DOM对象&#xff0c;如果有同名class只会获取第一个 var mysapn$(span);//通过元素的标签名获取DOM对象 var divarr$(…...

【C++】优先级队列的基本概念以及其模拟实现

文章目录 补充知识&#xff1a;仿函数一、优先级队列&#xff1a;1.引入2.介绍 二、priority_queue的模拟实现1.大体框架2.私有成员函数&#xff1a;1.向下调整&#xff08;AdjustDown&#xff09;2.向上调整&#xff08;AdjustUp&#xff09; 3.公有成员函数1大小&#xff08;…...

TextClamp for Vue3.0(Vue3.0的文本展开收起组件)

呦&#xff01;大家好&#xff0c;好久没有更新博客了&#xff0c;最近实现了一个一直想自己完成的一个东西&#xff0c;就是文本的展开收起组件&#xff0c;以前项目需要用到&#xff0c;自己实现一个又太繁琐&#xff0c;所以那个时候都是用的别人的轮子&#xff0c;现在自己…...

区间预测 | MATLAB实现VAR向量自回归时间序列区间预测

区间预测 | MATLAB实现VAR向量自回归时间序列区间预测 目录 区间预测 | MATLAB实现VAR向量自回归时间序列区间预测预测效果基本介绍程序设计参考资料预测效果 基本介绍 区间预测 | MATLAB实现VAR向量自回归时间序列区间预测 VAR(Vector Autoregression)模型是一种广泛应用于时…...

在 Windows 上搭建 NTP 服务器

文章目录 一、基础环境二、适用场景三、操作步骤四、常用的NTP服务器五、参考资料 版权声明&#xff1a;本文为博主原创文章&#xff0c;于2023年7月30日首发于CSDN&#xff0c;转载请附上原文出处链接和本声明。本文链接&#xff1a;https://blog.csdn.net/u011046671 一、基础…...

应急响应经典案例-FTP 暴力破解

应急响应经典案例-FTP 暴力破解 应急场景日志分析应急处理措施 应急场景 从昨天开始&#xff0c;网站响应速度变得缓慢&#xff0c;网站服务器登录上去非常卡&#xff0c;重启服务器就能保证一段时间的正常访问&#xff0c;网站响应状态时而飞快时而缓慢&#xff0c;多数时间是…...

41. linux通过yum安装postgresql

文章目录 1.下载安装包2.关闭内置PostgreSQL模块:3.安装postgresql服务:4.初始化postgresql数据库:5.设置开机自启动:6.启动postgresql数据库7.查看postgresql进程8.通过netstat命令或者lsof 监听默认端口54329.使用find命令查找了一下postgresql.conf的配置位置10.修改postgre…...

SpringBoot启动流程及自动配置

SpringBoot启动流程源码&#xff1a; 1、启动SpringBoot启动类SpringbootdemoApplication中的main方法。 SpringBootApplication public class SpringbootdemoApplication {public static void main(String[] args) {SpringApplication.run(SpringbootdemoApplication.class, …...

【Linux】进程轻松入门

目录 一&#xff0c; 冯* 诺依曼体系结构 1&#xff0c;存储结构 ​编辑 二&#xff0c; 操作系统 1&#xff0c;概念 2&#xff0c;设计OS的目的 3&#xff0c;定位 4&#xff0c;如何理解 "管理" 5&#xff0c; 总结 三&#xff0c;进程 1. 概念 那么…...

【使用时空RBF-NN进行非线性系统识别】实现了 RBF、分数 RBF 和时空 RBF 神经网络,用于非线性系统识别研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

Tomcat 安装配置教程及成功后,启动失败报错解决方案

解决方案 我的报错原因是因为我的JDK是1.8的而我的Tomcat是10版本的&#xff0c;可能是因为版本原因吧&#xff0c;我重新装了Tomcat 9就可以启动成功了&#xff01; 简单说下安装的时候需要注意哪些步骤吧 今天我在安装tomcat10的时候&#xff0c;安装成功后&#xff0c;启…...

C#文件操作从入门到精通(2)——查看某个dll中有哪些函数

kernel32.dll中含有ini文件操作使用的函数,我们可以通过VisualStudio自带的dumpbin.exe查看dll所包含的函数,操作步骤如下: 1、找到dumpbin.exe所在的文件夹 我的电脑中安装了VisualStudio2019社区版以及VisualStudio2017Professional,但是我发现VisualStudio2019社区版中…...

二分查找算法(全网最详细代码演示)

二分查找也称 半查找&#xff08;Binary Search&#xff09;&#xff0c;它时一种效率较高的查找方法。但是&#xff0c;折半查找要求线性表必须采用顺序存储结构&#xff0c;而且表中元素按关键字 有序 排列。 注意&#xff1a;使用二分查找的前提是 该数组是有序的。 在实际开…...

draw up a plan

爱情是美好的&#xff0c;却不是唯一的。爱情只是属于个人化的感情。 推荐一篇关于爱情的美文&#xff1a; 在一个小镇上&#xff0c;有一家以制作精美巧克力而闻名的手工巧克力店&#xff0c;名叫“甜蜜之爱”。这家巧克力店是由一位名叫艾玛的年轻女性经营的&#xff0c;她对…...

抖音seo源码开发源代码开发技术分享

一、 抖音SEO源码开发&#xff0c;需要掌握以下技术&#xff1a; 抖音API接口&#xff1a;抖音提供了丰富的API接口&#xff0c;包括用户信息、视频信息、评论信息等。 数据爬取技术&#xff1a;通过抓包分析抖音接口的数据结构&#xff0c;可以使用Python等编程语言编写爬虫程…...

QEMU(Quick Emulator)

QEMU&#xff08;Quick Emulator&#xff09;是一款由法布里斯贝拉等人编写的免费的可执行硬件虚拟化的开源托管虚拟机。它可以通过动态的二进制转换模拟CPU&#xff0c;并提供一组设备模型&#xff0c;使它能够运行多种未修改的客户机OS。QEMU还可以为user-level的进程执行CPU…...

Gateway结合nacos(lb://xxx)无效问题

Gateway结合nacos无效 版本如下&#xff1a; com.alibaba.cloud:spring-cloud-starter-alibaba-nacos-discovery:2021.0.1.0 org.springframework.cloud:spring-cloud-starter-gateway:3.1.1 配置如下&#xff1a; server:port: 7000 spring:application:name: springCloudGa…...

NODEJS笔记

全局对象 global/window console.log/info/warn/error/time/timeEnd process.arch/platform/version/env/kill/pid/nextTick Buffer.alloc(5,abcde) String/toString setTimeout/clearTimeout setInterval/clearInterval setImmediate/clearImmediate process.nextTi…...

无涯教程-jQuery - html( )方法函数

html(val)方法获取第一个匹配元素的html内容(innerHTML)。此属性在XML文档上不可用。 html( ) - 语法 selector.html( ) html( ) - 示例 以下是一个简单的示例&#xff0c;简单说明了此方法的用法- <html><head><title>The jQuery Example</title>…...

Linux vsftp三种模式的简单配置部署

环境&#xff1a;Debian 6.1.27-1kali1 (2023-05-12) vsftpd 安装 --查看是否当前系统是否已安装 apt list --installed | grep vsftpd 没有安装的话&#xff0c;就正常安装 apt-get update apt-get install vsftpd 一、匿名用户模式 分享一些不重要文件&#xff0c;任…...

6.1.tensorRT高级(1)-概述

目录 前言1. tensorRT高级概述总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程&#xff0c;之前有看过一遍&#xff0c;但是没有做笔记&#xff0c;很多东西也忘了。这次重新撸一遍&#xff0c;顺便记记笔记。 本次课程学习 tensorRT 高级-概述 课程大纲可看下面的思维…...

应用网站建设/seo检查工具

第1周的编程题。请注意1.x的“如何交作业” 温馨提示&#xff1a; 1.本次作业属于Online Judge题目&#xff0c;提交后由系统即时判分。 2.学生可以在作业截止时间之前不限次数提交答案&#xff0c;系统将取其中的最高分作为最终成绩。 1温度转换&#xff08;10分&#xff09;题…...

大连最新消息今天/2022年搜索引擎优化指南

其实技术人和大众一样, 只是多了一层要与电脑交流的身份罢了. 而这样的一层应该是使得我们的生活更加的色彩化才是. 于是又注册了这个名为”左手代码”的订阅号. 始于代码, 又不仅仅是代码. 我想这才应该是一个技术人的初心吧. 2014年的那个暑假, 正好是我大学二年级结束, 或许…...

博物馆网站制作/关键词排名怎么做上首页

美国佛罗里达州、南卡罗来纳州等东海岸地区6日继续疏散数百万居民&#xff0c;严阵以待迎接即将来袭的超强飓风“马修”(Matthew)。“马修”此前已造成加勒比地区114人死亡&#xff0c;目前增强为4级飓风向美国逼近。为了让受灾区表明自己的安全状态&#xff0c;Facebook在美国…...

网站有几个后台/网站外包一般多少钱啊

更多编程教程请到&#xff1a;菜鸟教程 https://www.piaodoo.com/ 友情链接&#xff1a; 高州阳光论坛https://www.hnthzk.com/人人影视http://www.sfkyty.com/这两个函数主要提供&#xff0c;基于字典的访问局部和全局变量的方式。在理解这两个函数时&#xff0c;首先来理解…...

在线网站免费网站入口/搜索引擎营销流程是什么?

...

中文域名查询网站/百度网页浏览器

第 1 步&#xff1a;集成环信SDK 方式一&#xff1a; 推荐使用Cocoapods集成环信SDK。Cocoapods提供了一个简单的依赖管理系统&#xff0c;避免手动导入产生的错误&#xff08;首先需要确认已经安装了Cocoapods&#xff09;。 详情请见http://blog.csdn.net/fantasy_jun/art…...