当前位置: 首页 > news >正文

Python 使用pandas处理Excel —— 快递订单处理 数据匹配 邮费计算

问题背景

有表A,其数据如下
在这里插入图片描述
关键信息是邮寄地址单号

表B:
在这里插入图片描述
关键信息是运单号重量
我们需要做的是,对于表A中的每一条数据,根据其单号,在表B中查找到对应的重量。
在表A中新增一列重量,将刚才查到的数据填在该列。
更近一步地,会再提供一张价格表:
在这里插入图片描述

我们需要根据表A的邮寄地址和刚得到的重量计算该订单的运费。
同样在表A中新增一列运费,将计算得到的运费填写在该列。

准备工作

建立一个文件夹,在该文件夹下再建立三个文件夹,分别是origin、query和result,里面分别放表A(可以放多个表)、表B(也可以放多个表),result放的是最终的结果。

其它细节

1、可以发现有些单号为空的行被折叠了,为了保持原样,所以我们会添加一列collapse,如果订单号为空,就设置collapse为1,否则为空。之后再根据collapse这列折叠单号为空的行,后面会介绍。
2、会存在一些在表B中找不到重量信息的订单号,这些订单将被输出在命令行窗口。
3、也可以处理有多个sheet的表。

代码

import os
import re
import pandas as pd
import cpca
import math# 将所有待处理的文件都保存在这个路径下
ROOT_DIR = '/Users/XXX/Desktop/OrderProcessing/'
# 所有结果将保存在这个路径下
SAVE_DIR = '/Users/XXX/Desktop/OrderProcessing/result/'# 参照此格式,三个数字分别表示0.5kg,首重,续重。
# 注意省份名称一定要规范。不过不要求Excel表格中的邮寄地址必须要规范。
COST_TABLE_ORIGIN = {'江苏省': [1, 3, 1],'浙江省': [1, 3, 1],'上海市': [1, 3, 1],'安徽省': [1, 3, 1],'舟山市': [1, 3, 1]}def calc_cost(province, city, weight, cost_table):"""根据地区和重量计算运费:param province: 省份:param city: 城市:param weight: 重量:param cost_table: 价格表:return: 价格"""costs = Noneadditional = 0if str(province) in "北京市" or str(province) in "上海市":additional = 1for p, cost in cost_table.items():if str(city) in p:costs = costif costs is None:for p, cost in cost_table.items():if str(province) in p:costs = costif costs is None:print("    计算费用时发生错误,可能是价格表中没有对应的地区")return Noneif weight <= 0.5:return costs[0] + additionalelif weight <= 1:return costs[1] + additionalelse:return costs[1] + math.ceil(weight - 1) * costs[2] + additionaldef query_weight_by_order(file_name, order, order_str='运单号', weight_str='重量'):"""根据订单号查询重量:param file_name: 去哪个文件里查找:param order: 订单号:param order_str: 订单的列名:param weight_str: 重量的列名:return: 该订单的重量"""df = pd.read_excel(io=file_name)num_rows = len(df.index.values)weight = Nonefor row in range(num_rows):if str(df.iloc[row][order_str]) == order:weight = df.iloc[row][weight_str]breakreturn weightdef add_weight(read_file_name, write_file_name, sheet_name=None, collapse_flag=True):"""添加重量信息:param read_file_name: 读取文件:param write_file_name:  写入文件:param sheet_name: 工作表名称:param collapse_flag: 是否隐藏指定行,比如某项值为空,则隐藏该行:return:"""if sheet_name is None:df = pd.read_excel(io=read_file_name)writer = pd.ExcelWriter(write_file_name)else:df = pd.read_excel(io=read_file_name, sheet_name=sheet_name)# 这样写好像有点笨if os.path.exists(write_file_name):writer = pd.ExcelWriter(write_file_name, mode='a')else:writer = pd.ExcelWriter(write_file_name, mode='w')num_rows = len(df.index.values)if '单号' not in df.columns.values:print("    没有单号这一列,请确保单号那列的列名为'单号'")writer.close()returnfor row in range(num_rows):order = str(df.loc[row, '单号'])'''像order这一列,如果全是正常的单号,读进来会是浮点数,比如78649717XXX259.0如果有几行是"停发",读进来的就都是不带小数点的了,比如78XXX17332259空值就是显示nan'''if order == "nan" or order == "停发":  # pd.isnull(order)if order == "nan" and collapse_flag:  # 若订单号为空,则标记隐藏该行df.loc[row, 'collapse'] = 1continue# 到这里的,就是带小数点的订单号,或者正常的不带小数点的订单号if order[-2] == '.':  # 去除小数点order = order[:-2]# df.loc[row, '单号'] = order# 有可能写了多个订单号,比如786497173XXX9;78649719X80XX0;786497X799ZXX4# 这种情况下,就把多个订单的重量进行累加orders = re.split(',|;|\n| |,|;', order)weight = 0for o in orders:if len(o) <= 0:continuew = None'''这里就是根据订单的不同查询不同的表比如Y开头的,查哪个表;数字开头的,查哪个表此处需要自定义'''if o[0] == 'Y':# 根据订单号查询重量w = query_weight_by_order(ROOT_DIR + "query/A.xlsx", o, order_str='运单号码', weight_str='计费重量(kg)')elif '0' <= o[0] <= '9':w = query_weight_by_order(ROOT_DIR + "query/B.xlsx", o)if w is not None and (isinstance(w, float) or isinstance(w, int)):weight += welse:print("    没有找到该订单的重量数据:" + o)if weight > 0:df.loc[row, '重量'] = weight# 格式化地址信息address = cpca.transform([df.loc[row, '邮寄地址']])# 计算运费cost = calc_cost(address.loc[0, '省'], address.loc[0, '市'], weight, COST_TABLE_ORIGIN)if cost is None:print("    发生错误的订单号为:", order)continueelse:df.loc[row, '运费'] = costif sheet_name is None:df.to_excel(writer, index=False)else:df.to_excel(writer, index=False, sheet_name=sheet_name)writer.close()"""
TODO:
1、修改ROOT_DIR和SAVE_DIR
2、将所有待处理的xlsx文件保存在ROOT_DIR/origin路径下,查询表保存在ROOT_DIR/query路径下
2、修改查询订单重量的代码,只需要简单地填写文件名,关键的列名等
3、修改价格表,并在调用calc_cost方法的地方指定价格表
"""
if __name__ == '__main__':if not os.path.exists(ROOT_DIR):print(ROOT_DIR + "不存在")exit()if not os.path.exists(SAVE_DIR):print("创建目录:" + SAVE_DIR)os.mkdir(SAVE_DIR)else:ans = input("是否删除%s下的所有文件?(Y/N):" % SAVE_DIR)if ans == "Y":# 删除该目录下的所有文件for filename in os.listdir(SAVE_DIR):os.remove(SAVE_DIR+filename)print("已删除SAVE_DIR下的所有文件")print("开始处理")for filename in os.listdir(ROOT_DIR+"origin/"):if filename[0] == '.' or filename[-4:] != "xlsx":  # 去除隐藏文件和非xlsx文件continueprint("正在处理:" + filename)xlsx = pd.ExcelFile(ROOT_DIR + "origin/" + filename)sheet_names = xlsx.sheet_namesxlsx.close()  # 不知道是不是需要for sheet_name in sheet_names:print("  正在处理:", sheet_name)add_weight(ROOT_DIR + "origin/" + filename, SAVE_DIR + filename, sheet_name)print("处理完毕")

处理结果

在这里插入图片描述
然后我们需要根据collapse列来折叠单号为空的行。
这个我还不知道怎么通过pandas实现,现在就只能先通过Excel自带的功能处理。
比如Mac版的WPS是这么处理的
1、选中collapse列
在这里插入图片描述
2、按command+G。按下图设置
在这里插入图片描述

3、点击定位
在这里插入图片描述

可以发现collapse为1的行被选中了
4、点击command+9。单号为空的行就被折叠了
在这里插入图片描述
5、然后再删除collapse这列就行了
最终结果:
在这里插入图片描述

命令行窗口输出

是否删除/Users/XXX/Desktop/OrderProcessing/result/下的所有文件?(Y/N):Y
已删除SAVE_DIR下的所有文件
开始处理
正在处理:table1.xlsx正在处理: Sheet1正在处理: Sheet2
正在处理:A.xlsx正在处理: AA没有找到该订单的重量数据:中通:786XXXX23没有找到该订单的重量数据:786X5780XX37没有找到该订单的重量数据:合在一起打包没有找到该订单的重量数据:786493XX3783158正在处理: AB计算费用时发生错误,可能是价格表中没有对应的地区发生错误的订单号为: 78649XXX184656计算费用时发生错误,可能是价格表中没有对应的地区发生错误的订单号为: 786497XXX08769没有找到该订单的重量数据:786X979XX8226没有找到该订单的重量数据:5箱没有找到该订单的重量数据:直发正在处理: AC正在处理: AD没有找到该订单的重量数据:YT699X121XX068没有找到该订单的重量数据:YT6993X9X987155没有找到该订单的重量数据:786499616XXX08没有找到该订单的重量数据:YT6XXX875919847没有找到该订单的重量数据:786497XXX57489正在处理: AE没有单号这一列,请确保单号那列的列名为'单号'
处理完毕Process finished with exit code 0

相关文章:

Python 使用pandas处理Excel —— 快递订单处理 数据匹配 邮费计算

问题背景 有表A&#xff0c;其数据如下 关键信息是邮寄地址和单号。 表B&#xff1a; 关键信息是运单号和重量 我们需要做的是&#xff0c;对于表A中的每一条数据&#xff0c;根据其单号&#xff0c;在表B中查找到对应的重量。 在表A中新增一列重量&#xff0c;将刚才查到的…...

【黑马SpringCloud(7)】分布式事务

分布式事务事务的ACID原则分布式事务理论基础CAP定理BASE理论Seataseata的部署seata的集成事务模式XA模式Seata的XA模型优缺点实现XA模式AT模式案例&#xff1a;AT模式更新数据脏写问题优缺点实现AT模式TCC模式流程分析Seata的TCC模型事务悬挂和空回滚实现TCC模式优缺点SAGA模式…...

百度地图API添加自定义标记解决单html文件跨域

百度地图API添加自定义标记解决单html文件跨域 因为要往百度地图上添加一些标注点&#xff0c;而且这些标注点要用自定义的图片&#xff0c;而且只能使用单html文件&#xff0c;不能使用服务器&#xff08;也别问为什么&#xff0c;就是这么个需求&#xff09;&#xff0c;做起…...

如何停止/重启/启动Redis服务

一、命令行直接启动/停止/重启redis 可以直接通过下面的命令启动/停止/重启redis /etc/init.d/redis-server start 启动redis服务 /etc/init.d/redis-server stop 停止redis服务 /etc/init.d/redis-server restart 重启redis服务1、启动redis服务…...

python 的selenium自动操控浏览器教程(2)

人生苦短&#xff0c;我用py 文章目录人生苦短&#xff0c;我用py关于部分网页无法找到元素的问题1方案1方案2关于部分网页无法找到元素的问题2解决方案被网站检查出来我们使用了selenium了怎么办&#xff1f;如何实现前进后退当使用py删除文件时报禁止访问怎么办怎么使用py实现…...

【Deformable Convolution】可变形卷积记录

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 可变形卷积记录 1. 正文 预印版&#xff1a; Deformable Convolutional Networks v1 Deformable ConvNets v2: More Deformable, Better Results 发表版…...

Oracle-Mysql 函数转换

Oracle-Mysql 函数转换limit <> ROWNUMcast <> TO_NUMBERcast as signedcast as unsignedregexp a_\\d <> REGEXP_LIKEschema() <> SELECT USER FROM DUALinformation_schema.COLUMNS表 <> ALL_TAB_COLUMNS表unix_timestampfrom_unixtime <&g…...

【Kafka】一.认识Kafka

kafka是一个分布式消息队列。由 Scala 开发的高性能跨语言分布式消息队列&#xff0c;单机吞吐量可以到达 10w 级&#xff0c;消息延迟在 ms 级。具有高性能、持久化、多副本备份、横向扩展能力。 生产者往队列里写消息&#xff0c;消费者从队列里取消息进行业务逻辑。 一般在…...

Linux软件管理YUM

目录 yum配置文件 创建仓库 yum查询功能 yum安装与升级功能 yum删除功能 yum仓库产生的问题和解决之道 yum与dnf 网络源 YUM就是通过分析RPM的标头数据后&#xff0c;根据各软件的相关性制作出属性依赖时的解决方案&#xff0c;然后可以自动处理软件的依赖属性问题&…...

【自学MYSQL】MySQL Windows安装

MySQL Windows安装 MySQL Windows下载 首先&#xff0c;我们打开 MySQL 的官网&#xff0c;网址如下&#xff1a; https://dev.mysql.com/downloads/mysql/在官网的主页&#xff0c;我们首先根据我们的操作系统&#xff0c;选择对应的系统&#xff0c;这里我们选择 Windows&…...

Linux c编程之常用技巧

一、说明 在Linux C的实际编程应用中,有很多有用的实践技巧,编程中掌握这些知识,会对编程有事半功倍的效果。 二、常用技巧 2.1 if 变量条件的写法 main.c: #include <stdio.h>int main(int argc, char *argv[]) {int a =...

21- 朴素贝叶斯 (NLP自然语言算法) (算法)

朴素贝叶斯要点 概率图模型算法往往应用于NLP自然语言处理领域。根据文本内容判定 分类 。 概率密度公式&#xff1a; 高斯朴素贝叶斯算法: from sklearn.naive_bayes import GaussianNB model GaussianNB() model.fit(X_train,y_train) 伯努利分布朴素贝叶斯算法 fro…...

设计模式第七讲-外观模式、适配器模式、模板方法模式详解

一. 外观模式 1. 背景 在现实生活中&#xff0c;常常存在办事较复杂的例子&#xff0c;如办房产证或注册一家公司&#xff0c;有时要同多个部门联系&#xff0c;这时要是有一个综合部门能解决一切手续问题就好了。 软件设计也是这样&#xff0c;当一个系统的功能越来越强&…...

flutter-第1章-配置环境

flutter-第1章-配置环境 本文针对Windows系统。 一、安装Android Studio 从Android Studio官网下载最新版本&#xff0c;一直默认安装就行。 安装完成要下载SDK&#xff0c;可能会需要科学上网。 打开AS&#xff0c;随便创建一个新项目。 点击右上角的SDK Manager 找到SDK…...

“消息驱动、事件驱动、流 ”的消息模型

文章目录背景消息驱动 Message-Driven事件驱动 Event-Driven流 Streaming事件规范标准简介&#xff1a; 本文旨在帮助大家对近期消息领域的高频词“消息驱动&#xff08;Message-Driven&#xff09;&#xff0c;事件驱动&#xff08;Event-Driven&#xff09;和流&#xff08;S…...

量化股票配对交易可以用Python语言实现吗?

量化股票配对交易可以用Python语言实现吗&#xff1f;Python 是一种流行的编程语言&#xff0c;可用于所有类型的领域&#xff0c;包括数据科学。有大量软件包可以帮助您实现目标&#xff0c;许多公司使用 Python 来开发与金融界相关的以数据为中心的应用程序和科学计算。 最重…...

机器学习洞察 | 一文带你“讲透” JAX

在上篇文章中&#xff0c;我们详细分享了 JAX 这一新兴的机器学习模型的发展和优势&#xff0c;本文我们将通过 Amazon SageMaker 示例展示如何部署并使用 JAX。JAX 的工作机制JAX 的完整工作机制可以用下面这幅图详细解释:图片来源&#xff1a;“Intro to JAX” video on YouT…...

OpenFaaS介绍

FaaS 云计算时代出现了大量XaaS形式的概念&#xff0c;从IaaS(Infrastructure as a Service)、PaaS(Platform as a Service)、SaaS(Software as a Service)到容器云引领的CaaS(Containers as a Service)&#xff0c;再到火热的微服务架构&#xff0c;它们都在试着将各种软、硬…...

【算法设计与分析】STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划;各类算法代码汇总

文章目录前言一、STL容器二、递归算法三、分治法四、蛮力法五、回溯法六、分支限界法七、贪心法八、动态规划前言 本篇共为8类算法(STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划)&#xff0c;则各取每类算法中的几例经典示例进行展示。 一、STL容…...

vue初识

第一次接触vue&#xff0c;前端的html,css,jquery,js学习也有段时间了&#xff0c;就照着B站的视频简单看了一些&#xff0c;了解了一些简单的用法&#xff0c;这边做一个记录。 官网 工具&#xff1a;使用VSCode以及Live Server插件&#xff08;能够实时预览&#xff09; 第…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...