当前位置: 首页 > news >正文

Python 使用pandas处理Excel —— 快递订单处理 数据匹配 邮费计算

问题背景

有表A,其数据如下
在这里插入图片描述
关键信息是邮寄地址单号

表B:
在这里插入图片描述
关键信息是运单号重量
我们需要做的是,对于表A中的每一条数据,根据其单号,在表B中查找到对应的重量。
在表A中新增一列重量,将刚才查到的数据填在该列。
更近一步地,会再提供一张价格表:
在这里插入图片描述

我们需要根据表A的邮寄地址和刚得到的重量计算该订单的运费。
同样在表A中新增一列运费,将计算得到的运费填写在该列。

准备工作

建立一个文件夹,在该文件夹下再建立三个文件夹,分别是origin、query和result,里面分别放表A(可以放多个表)、表B(也可以放多个表),result放的是最终的结果。

其它细节

1、可以发现有些单号为空的行被折叠了,为了保持原样,所以我们会添加一列collapse,如果订单号为空,就设置collapse为1,否则为空。之后再根据collapse这列折叠单号为空的行,后面会介绍。
2、会存在一些在表B中找不到重量信息的订单号,这些订单将被输出在命令行窗口。
3、也可以处理有多个sheet的表。

代码

import os
import re
import pandas as pd
import cpca
import math# 将所有待处理的文件都保存在这个路径下
ROOT_DIR = '/Users/XXX/Desktop/OrderProcessing/'
# 所有结果将保存在这个路径下
SAVE_DIR = '/Users/XXX/Desktop/OrderProcessing/result/'# 参照此格式,三个数字分别表示0.5kg,首重,续重。
# 注意省份名称一定要规范。不过不要求Excel表格中的邮寄地址必须要规范。
COST_TABLE_ORIGIN = {'江苏省': [1, 3, 1],'浙江省': [1, 3, 1],'上海市': [1, 3, 1],'安徽省': [1, 3, 1],'舟山市': [1, 3, 1]}def calc_cost(province, city, weight, cost_table):"""根据地区和重量计算运费:param province: 省份:param city: 城市:param weight: 重量:param cost_table: 价格表:return: 价格"""costs = Noneadditional = 0if str(province) in "北京市" or str(province) in "上海市":additional = 1for p, cost in cost_table.items():if str(city) in p:costs = costif costs is None:for p, cost in cost_table.items():if str(province) in p:costs = costif costs is None:print("    计算费用时发生错误,可能是价格表中没有对应的地区")return Noneif weight <= 0.5:return costs[0] + additionalelif weight <= 1:return costs[1] + additionalelse:return costs[1] + math.ceil(weight - 1) * costs[2] + additionaldef query_weight_by_order(file_name, order, order_str='运单号', weight_str='重量'):"""根据订单号查询重量:param file_name: 去哪个文件里查找:param order: 订单号:param order_str: 订单的列名:param weight_str: 重量的列名:return: 该订单的重量"""df = pd.read_excel(io=file_name)num_rows = len(df.index.values)weight = Nonefor row in range(num_rows):if str(df.iloc[row][order_str]) == order:weight = df.iloc[row][weight_str]breakreturn weightdef add_weight(read_file_name, write_file_name, sheet_name=None, collapse_flag=True):"""添加重量信息:param read_file_name: 读取文件:param write_file_name:  写入文件:param sheet_name: 工作表名称:param collapse_flag: 是否隐藏指定行,比如某项值为空,则隐藏该行:return:"""if sheet_name is None:df = pd.read_excel(io=read_file_name)writer = pd.ExcelWriter(write_file_name)else:df = pd.read_excel(io=read_file_name, sheet_name=sheet_name)# 这样写好像有点笨if os.path.exists(write_file_name):writer = pd.ExcelWriter(write_file_name, mode='a')else:writer = pd.ExcelWriter(write_file_name, mode='w')num_rows = len(df.index.values)if '单号' not in df.columns.values:print("    没有单号这一列,请确保单号那列的列名为'单号'")writer.close()returnfor row in range(num_rows):order = str(df.loc[row, '单号'])'''像order这一列,如果全是正常的单号,读进来会是浮点数,比如78649717XXX259.0如果有几行是"停发",读进来的就都是不带小数点的了,比如78XXX17332259空值就是显示nan'''if order == "nan" or order == "停发":  # pd.isnull(order)if order == "nan" and collapse_flag:  # 若订单号为空,则标记隐藏该行df.loc[row, 'collapse'] = 1continue# 到这里的,就是带小数点的订单号,或者正常的不带小数点的订单号if order[-2] == '.':  # 去除小数点order = order[:-2]# df.loc[row, '单号'] = order# 有可能写了多个订单号,比如786497173XXX9;78649719X80XX0;786497X799ZXX4# 这种情况下,就把多个订单的重量进行累加orders = re.split(',|;|\n| |,|;', order)weight = 0for o in orders:if len(o) <= 0:continuew = None'''这里就是根据订单的不同查询不同的表比如Y开头的,查哪个表;数字开头的,查哪个表此处需要自定义'''if o[0] == 'Y':# 根据订单号查询重量w = query_weight_by_order(ROOT_DIR + "query/A.xlsx", o, order_str='运单号码', weight_str='计费重量(kg)')elif '0' <= o[0] <= '9':w = query_weight_by_order(ROOT_DIR + "query/B.xlsx", o)if w is not None and (isinstance(w, float) or isinstance(w, int)):weight += welse:print("    没有找到该订单的重量数据:" + o)if weight > 0:df.loc[row, '重量'] = weight# 格式化地址信息address = cpca.transform([df.loc[row, '邮寄地址']])# 计算运费cost = calc_cost(address.loc[0, '省'], address.loc[0, '市'], weight, COST_TABLE_ORIGIN)if cost is None:print("    发生错误的订单号为:", order)continueelse:df.loc[row, '运费'] = costif sheet_name is None:df.to_excel(writer, index=False)else:df.to_excel(writer, index=False, sheet_name=sheet_name)writer.close()"""
TODO:
1、修改ROOT_DIR和SAVE_DIR
2、将所有待处理的xlsx文件保存在ROOT_DIR/origin路径下,查询表保存在ROOT_DIR/query路径下
2、修改查询订单重量的代码,只需要简单地填写文件名,关键的列名等
3、修改价格表,并在调用calc_cost方法的地方指定价格表
"""
if __name__ == '__main__':if not os.path.exists(ROOT_DIR):print(ROOT_DIR + "不存在")exit()if not os.path.exists(SAVE_DIR):print("创建目录:" + SAVE_DIR)os.mkdir(SAVE_DIR)else:ans = input("是否删除%s下的所有文件?(Y/N):" % SAVE_DIR)if ans == "Y":# 删除该目录下的所有文件for filename in os.listdir(SAVE_DIR):os.remove(SAVE_DIR+filename)print("已删除SAVE_DIR下的所有文件")print("开始处理")for filename in os.listdir(ROOT_DIR+"origin/"):if filename[0] == '.' or filename[-4:] != "xlsx":  # 去除隐藏文件和非xlsx文件continueprint("正在处理:" + filename)xlsx = pd.ExcelFile(ROOT_DIR + "origin/" + filename)sheet_names = xlsx.sheet_namesxlsx.close()  # 不知道是不是需要for sheet_name in sheet_names:print("  正在处理:", sheet_name)add_weight(ROOT_DIR + "origin/" + filename, SAVE_DIR + filename, sheet_name)print("处理完毕")

处理结果

在这里插入图片描述
然后我们需要根据collapse列来折叠单号为空的行。
这个我还不知道怎么通过pandas实现,现在就只能先通过Excel自带的功能处理。
比如Mac版的WPS是这么处理的
1、选中collapse列
在这里插入图片描述
2、按command+G。按下图设置
在这里插入图片描述

3、点击定位
在这里插入图片描述

可以发现collapse为1的行被选中了
4、点击command+9。单号为空的行就被折叠了
在这里插入图片描述
5、然后再删除collapse这列就行了
最终结果:
在这里插入图片描述

命令行窗口输出

是否删除/Users/XXX/Desktop/OrderProcessing/result/下的所有文件?(Y/N):Y
已删除SAVE_DIR下的所有文件
开始处理
正在处理:table1.xlsx正在处理: Sheet1正在处理: Sheet2
正在处理:A.xlsx正在处理: AA没有找到该订单的重量数据:中通:786XXXX23没有找到该订单的重量数据:786X5780XX37没有找到该订单的重量数据:合在一起打包没有找到该订单的重量数据:786493XX3783158正在处理: AB计算费用时发生错误,可能是价格表中没有对应的地区发生错误的订单号为: 78649XXX184656计算费用时发生错误,可能是价格表中没有对应的地区发生错误的订单号为: 786497XXX08769没有找到该订单的重量数据:786X979XX8226没有找到该订单的重量数据:5箱没有找到该订单的重量数据:直发正在处理: AC正在处理: AD没有找到该订单的重量数据:YT699X121XX068没有找到该订单的重量数据:YT6993X9X987155没有找到该订单的重量数据:786499616XXX08没有找到该订单的重量数据:YT6XXX875919847没有找到该订单的重量数据:786497XXX57489正在处理: AE没有单号这一列,请确保单号那列的列名为'单号'
处理完毕Process finished with exit code 0

相关文章:

Python 使用pandas处理Excel —— 快递订单处理 数据匹配 邮费计算

问题背景 有表A&#xff0c;其数据如下 关键信息是邮寄地址和单号。 表B&#xff1a; 关键信息是运单号和重量 我们需要做的是&#xff0c;对于表A中的每一条数据&#xff0c;根据其单号&#xff0c;在表B中查找到对应的重量。 在表A中新增一列重量&#xff0c;将刚才查到的…...

【黑马SpringCloud(7)】分布式事务

分布式事务事务的ACID原则分布式事务理论基础CAP定理BASE理论Seataseata的部署seata的集成事务模式XA模式Seata的XA模型优缺点实现XA模式AT模式案例&#xff1a;AT模式更新数据脏写问题优缺点实现AT模式TCC模式流程分析Seata的TCC模型事务悬挂和空回滚实现TCC模式优缺点SAGA模式…...

百度地图API添加自定义标记解决单html文件跨域

百度地图API添加自定义标记解决单html文件跨域 因为要往百度地图上添加一些标注点&#xff0c;而且这些标注点要用自定义的图片&#xff0c;而且只能使用单html文件&#xff0c;不能使用服务器&#xff08;也别问为什么&#xff0c;就是这么个需求&#xff09;&#xff0c;做起…...

如何停止/重启/启动Redis服务

一、命令行直接启动/停止/重启redis 可以直接通过下面的命令启动/停止/重启redis /etc/init.d/redis-server start 启动redis服务 /etc/init.d/redis-server stop 停止redis服务 /etc/init.d/redis-server restart 重启redis服务1、启动redis服务…...

python 的selenium自动操控浏览器教程(2)

人生苦短&#xff0c;我用py 文章目录人生苦短&#xff0c;我用py关于部分网页无法找到元素的问题1方案1方案2关于部分网页无法找到元素的问题2解决方案被网站检查出来我们使用了selenium了怎么办&#xff1f;如何实现前进后退当使用py删除文件时报禁止访问怎么办怎么使用py实现…...

【Deformable Convolution】可变形卷积记录

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 可变形卷积记录 1. 正文 预印版&#xff1a; Deformable Convolutional Networks v1 Deformable ConvNets v2: More Deformable, Better Results 发表版…...

Oracle-Mysql 函数转换

Oracle-Mysql 函数转换limit <> ROWNUMcast <> TO_NUMBERcast as signedcast as unsignedregexp a_\\d <> REGEXP_LIKEschema() <> SELECT USER FROM DUALinformation_schema.COLUMNS表 <> ALL_TAB_COLUMNS表unix_timestampfrom_unixtime <&g…...

【Kafka】一.认识Kafka

kafka是一个分布式消息队列。由 Scala 开发的高性能跨语言分布式消息队列&#xff0c;单机吞吐量可以到达 10w 级&#xff0c;消息延迟在 ms 级。具有高性能、持久化、多副本备份、横向扩展能力。 生产者往队列里写消息&#xff0c;消费者从队列里取消息进行业务逻辑。 一般在…...

Linux软件管理YUM

目录 yum配置文件 创建仓库 yum查询功能 yum安装与升级功能 yum删除功能 yum仓库产生的问题和解决之道 yum与dnf 网络源 YUM就是通过分析RPM的标头数据后&#xff0c;根据各软件的相关性制作出属性依赖时的解决方案&#xff0c;然后可以自动处理软件的依赖属性问题&…...

【自学MYSQL】MySQL Windows安装

MySQL Windows安装 MySQL Windows下载 首先&#xff0c;我们打开 MySQL 的官网&#xff0c;网址如下&#xff1a; https://dev.mysql.com/downloads/mysql/在官网的主页&#xff0c;我们首先根据我们的操作系统&#xff0c;选择对应的系统&#xff0c;这里我们选择 Windows&…...

Linux c编程之常用技巧

一、说明 在Linux C的实际编程应用中,有很多有用的实践技巧,编程中掌握这些知识,会对编程有事半功倍的效果。 二、常用技巧 2.1 if 变量条件的写法 main.c: #include <stdio.h>int main(int argc, char *argv[]) {int a =...

21- 朴素贝叶斯 (NLP自然语言算法) (算法)

朴素贝叶斯要点 概率图模型算法往往应用于NLP自然语言处理领域。根据文本内容判定 分类 。 概率密度公式&#xff1a; 高斯朴素贝叶斯算法: from sklearn.naive_bayes import GaussianNB model GaussianNB() model.fit(X_train,y_train) 伯努利分布朴素贝叶斯算法 fro…...

设计模式第七讲-外观模式、适配器模式、模板方法模式详解

一. 外观模式 1. 背景 在现实生活中&#xff0c;常常存在办事较复杂的例子&#xff0c;如办房产证或注册一家公司&#xff0c;有时要同多个部门联系&#xff0c;这时要是有一个综合部门能解决一切手续问题就好了。 软件设计也是这样&#xff0c;当一个系统的功能越来越强&…...

flutter-第1章-配置环境

flutter-第1章-配置环境 本文针对Windows系统。 一、安装Android Studio 从Android Studio官网下载最新版本&#xff0c;一直默认安装就行。 安装完成要下载SDK&#xff0c;可能会需要科学上网。 打开AS&#xff0c;随便创建一个新项目。 点击右上角的SDK Manager 找到SDK…...

“消息驱动、事件驱动、流 ”的消息模型

文章目录背景消息驱动 Message-Driven事件驱动 Event-Driven流 Streaming事件规范标准简介&#xff1a; 本文旨在帮助大家对近期消息领域的高频词“消息驱动&#xff08;Message-Driven&#xff09;&#xff0c;事件驱动&#xff08;Event-Driven&#xff09;和流&#xff08;S…...

量化股票配对交易可以用Python语言实现吗?

量化股票配对交易可以用Python语言实现吗&#xff1f;Python 是一种流行的编程语言&#xff0c;可用于所有类型的领域&#xff0c;包括数据科学。有大量软件包可以帮助您实现目标&#xff0c;许多公司使用 Python 来开发与金融界相关的以数据为中心的应用程序和科学计算。 最重…...

机器学习洞察 | 一文带你“讲透” JAX

在上篇文章中&#xff0c;我们详细分享了 JAX 这一新兴的机器学习模型的发展和优势&#xff0c;本文我们将通过 Amazon SageMaker 示例展示如何部署并使用 JAX。JAX 的工作机制JAX 的完整工作机制可以用下面这幅图详细解释:图片来源&#xff1a;“Intro to JAX” video on YouT…...

OpenFaaS介绍

FaaS 云计算时代出现了大量XaaS形式的概念&#xff0c;从IaaS(Infrastructure as a Service)、PaaS(Platform as a Service)、SaaS(Software as a Service)到容器云引领的CaaS(Containers as a Service)&#xff0c;再到火热的微服务架构&#xff0c;它们都在试着将各种软、硬…...

【算法设计与分析】STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划;各类算法代码汇总

文章目录前言一、STL容器二、递归算法三、分治法四、蛮力法五、回溯法六、分支限界法七、贪心法八、动态规划前言 本篇共为8类算法(STL容器、递归算法、分治法、蛮力法、回溯法、分支限界法、贪心法、动态规划)&#xff0c;则各取每类算法中的几例经典示例进行展示。 一、STL容…...

vue初识

第一次接触vue&#xff0c;前端的html,css,jquery,js学习也有段时间了&#xff0c;就照着B站的视频简单看了一些&#xff0c;了解了一些简单的用法&#xff0c;这边做一个记录。 官网 工具&#xff1a;使用VSCode以及Live Server插件&#xff08;能够实时预览&#xff09; 第…...

火山引擎入选《2022 爱分析 · DataOps 厂商全景报告》,旗下 DataLeap 产品能力获认可

更多技术交流、求职机会&#xff0c;欢迎关注字节跳动数据平台微信公众号&#xff0c;回复【1】进入官方交流群 2 月 9 日&#xff0c;国内领先的数字化市场研究与咨询机构爱分析发布了《2022 爱分析DataOps 厂商全景报告》&#xff08;以下简称报告&#xff09;&#xff0c;报…...

java-spring_bean的生命周期

生命周期&#xff1a;从创建到消亡的完整过程初始化容器 1. 创建对象&#xff08;内存分配 &#xff09; 2. 执行构造方法 3. 执行属性注入&#xff08;set操作&#xff09; 4. 执行bean初始化方法 使用bean 执行业务操作 关闭/销毁容器 1.执行bean销毁方法 bean销毁时机 容…...

微服务相关概念

一、谈谈你对微服务的理解&#xff0c;微服务有哪些优缺点&#xff1f;微服务是由Martin Fowler大师提出的。微服务是一种架构风格&#xff0c;通过将大型的单体应用划分为比较小的服务单元&#xff0c;从而降低整个系统的复杂度。优点&#xff1a;1、服务部署更灵活&#xff1…...

论文解读:(TransA)TransA: An Adaptive Approach for Knowledge Graph Embedding

简介 先前的知识表示方法&#xff1a;TransE、TransH、TransR、TransD、TranSparse等。的损失函数仅单纯的考虑hrh rhr和ttt在某个语义空间的欧氏距离&#xff0c;认为只要欧式距离最小&#xff0c;就认为h和th和th和t的关系为r。显然这种度量指标过于简单&#xff0c;虽然先…...

js将数字转十进制+十六进制(联动el-ui下拉选择框)

十进制与十六进制的整数转化一、十进制转十六进制二、十六进制转十进制三、联动demo一、十进制转十六进制 正则表达式&#xff1a; /^([0-9]||([1-9][0-9]{0,}))$/解析&#xff1a;[0-9]代表个位数&#xff0c;([1-9][0-9]{0,})代表十位及以上 二、十六进制转十进制 正则表达…...

关于RedissonLock的一些所思

关于RedissonClient.getLock() 我们一般的使用Redisson的方式就是&#xff1a; RLock myLock redissonClient.getLock("my_order");//myLock.lock();//myLock.tryLock();就上面的例子里&#xff0c;如果某个线程已经拿到了my_order的锁&#xff0c;那别的线程调用m…...

C++:倒牛奶问题

文章目录题目一、输入二、输出三、思路代码题目 农业&#xff0c;尤其是生产牛奶&#xff0c;是一个竞争激烈的行业。Farmer John发现如果他不在牛奶生产工艺上有所创新&#xff0c;他的乳制品生意可能就会受到重创&#xff01; 幸运的是&#xff0c;Farmer John想出了一个好主…...

MySQL8.x group_by报错的4种解决方法

在我们使用MySQL的时候总是会遇到各种各样的报错&#xff0c;让人头痛不已。其中有一种报错&#xff0c;sql_modeonly_full_group_by&#xff0c;十分常见&#xff0c;每次都是老长的一串出现&#xff0c;然后带走你所有的好心情&#xff0c;如&#xff1a;LIMIT 0, 1000 Error…...

具有非线性动态行为的多车辆列队行驶问题的基于强化学习的方法

论文地址&#xff1a; Reinforcement Learning Based Approach for Multi-Vehicle Platooning Problem with Nonlinear Dynamic Behavior 摘要 协同智能交通系统领域的最新研究方向之一是车辆编队。研究人员专注于通过传统控制策略以及最先进的深度强化学习 (RL) 方法解决自动…...

TrueNas篇-硬盘直通

硬盘直通 在做硬盘直通之前&#xff0c;在trueNas(或者其他虚拟机)内是检测不到安装的硬盘的。 在pve节点查看硬盘信息 打开pve的shell控制台 输入下面的命令查看硬盘信息&#xff1a; ls -l /dev/disk/by-id/该命令会显示出实际所有的硬盘设备信息&#xff0c;其中ata代…...

陕西手机网站建设公司/推广公司是做什么的

跨域资源共享(CORS)是什么&#xff1f;跨域资源共享(CORS) 是一种机制&#xff0c;它使用额外的 HTTP 头来告诉浏览器 让运行在一个 origin (domain) 上的Web应用被准许访问来自不同源服务器上的指定的资源。当一个资源从与该资源本身所在的服务器不同的域、协议或端口请求一个…...

wordpress批量发布器/小学培训机构

我写一下一直用的搜狗输入法&#xff0c;电脑手机上都在用。 ①搜狗输入法自由的一点是皮肤&#xff0c;可以根据用户的喜好自定义皮肤&#xff0c;以及整体的风格都可以切换②记住用户选择&#xff1a;能够把用户使用频繁的字词的位置调整到首页&#xff0c;供用户选择。此外&…...

怎样做网站操作向导/广东seo推广外包

首先看组成&#xff1a;1.引导扇区&#xff0c;2.fat表1&#xff0c;3.fat表2&#xff0c;4.数据区 引导区&#xff1a;放引导代码的&#xff0c;包括了一些文件系统的信息&#xff0c;包括&#xff1a;卷标&#xff0c;根目录文件最大多少&#xff0c;文件系统类型&#xff0c…...

免费个人二级域名网站/品牌策划方案怎么做

2021.11.23下午学习笔记 在流程图中&#xff0c;长方形表示判断模块&#xff0c;椭圆形表示中止模块。 从判断模块引出的左右箭头称为分支。 决策树的主要优势在于数据形式非常容易理解。 机器根据数据集创建规则的过程就是机器学习的过程。 3.1 决策树的构造 优缺点&#…...

职业做网站游戏的/抚州seo外包

今天搭建SpringCloud的ConfigServer时候一直报错 原因在于后台一直报SSL的异常could not be stablished because of SSL problems 找了无数的方法&#xff0c;最后无意间发现有一个配置 skip-ssl-validation属性&#xff0c;然后设置为true就好了&#xff0c;附上我的applicati…...

做数据可视化图的网站/服装市场调研报告

OS文件本地化处理要经过三个步骤&#xff0c;获得文件保存路径、根据文件的属性选择对应的存档方式&#xff0c;存档读档的实现。 一、获得文件保存路径 1."应用程序包": 这里面存放的是应用程序的源文件&#xff0c;包括资源文件和可执行文件。 NSString *path [[N…...