【python学习笔记】 :Lambda 函数
Lambda 函数是 Python 中的匿名函数。有些人将它们简称为lambdas,它们的语法如下:
lambda arguments: expression
lambda 关键字可以用来创建一个 lambda 函数,紧跟其后的是参数列表和用冒号分割开的单个表达式。例如,lambda x: 2 * x 是将任何输入的数乘2,而 lambda x, y: x+y 是计算两个数字的和。语法十分直截了当,对吧?
假设您知道什么是 lambda 函数,本文旨在提供有关如何正确使用 lambda 函数的一些常规准则。
1. 不要返回任何值
看看语法,您可能会注意到我们在 lambda 函数中并没有返回任何内容。这都是因为 lambda 函数只能包含一个表达式。然而,使用 return 关键字会构成不符合规定语法的语句,如下所示:
>>> integers = [(3, -3), (2, 3), (5, 1), (-4, 4)]
>>> sorted(integers, key=lambda x: x[-1])
[(3, -3), (5, 1), (2, 3), (-4, 4)]
>>> sorted(integers, key=lambda x: return x[-1])
... File "", line 1sorted(integers, key=lambda x: return x[-1])^
SyntaxError: invalid syntax
该错误可能是由于无法区分表达式和语句而引起的。像是包含 return、try、 with 以及 if 的语句会执行特殊动作。然而,表达式指的是那些可以被计算出一个值的表达,例如数值或其他 Python 对象。
通过使用 lambda 函数,单个表达式会被计算为一个值并且参与后续的计算,例如由 sorted 函数排序。
2. 不要忘记更好的选择
lambda 函数最常见的使用场景是将它作为一些内置工具函数中 key 的实参,比如上面展示的 sorted() 和 max()。根据情况,我们可以使用其他替代方法。思考下面的例子:
>>> integers = [-4, 3, 7, -5, -2, 6]
>>> sorted(integers, key=lambda x: abs(x))
[-2, 3, -4, -5, 6, 7]
>>> sorted(integers, key=abs)
[-2, 3, -4, -5, 6, 7]
>>> scores = [(93, 100), (92, 99), (95, 94)]
>>> max(scores, key=lambda x: x[0] + x[1])
(93, 100)
>>> max(scores, key=sum)
(93, 100)
在数据科学领域,很多人使用 pandas 库来处理数据。如下所示,我们可以使用 lambda 函数通过 map() 函数从现有数据中创建新数据。除了使用 lambda 函数外,我们还可以直接使用算术函数,因为 pandas 是支持的:
>>> import pandas as pd
>>> data = pd.Series([1, 2, 3, 4])
>>> data.map(lambda x: x + 5)
0 6
1 7
2 8
3 9
dtype: int64
>>> data + 5
0 6
1 7
2 8
3 9
dtype: int64
3. 不要将它赋值给变量
我曾见过一些人将 lambda 函数误认为是简单函数的另一种声明方式,您可能也见过有人像下面这么做:
>>> doubler = lambda x: 2 * x
>>> doubler(5)
10
>>> doubler(7)
14
>>> type(doubler)
<class 'function'>
对 lambda 函数命名的唯一作用可能是出于教学目的,以表明 lambda 函数的确是和其他函数一样的函数——可以被调用并且具有某种功能。除此之外,我们不应该将 lambda 函数赋值给变量。
为 lambda 函数命名的问题在于这使得调试不那么直观。与其他的使用常规 def 关键字创建的函数不同,lambda 函数没有名字,这也是为什么有时它们被称为匿名函数的原因。思考下面简单的例子,找出细微的区别:
>>> inversive0 = lambda x: 1 / x
>>> inversive0(2)
0.5
>>> inversive0(0)
Traceback (most recent call last):File "", line 1, in <module>File "", line 1, in
ZeroDivisionError: division by zero
>>> def inversive1(x):
... return 1 / x
...
>>> inversive1(2)
0.5
>>> inversive1(0)
Traceback (most recent call last):File "", line 1, in <module>File "", line 2, in inversive1
ZeroDivisionError: division by zero
当您的代码存在关于 lambda 函数的问题(即 inversive0),Traceback 错误信息只会提示您 lambda 函数存在问题。
相比之下,使用正常定义的函数,Traceback会清晰地提示您有问题的函数(即 inversive1)。
与此相关,如果您想多次使用 lambda 函数,最佳实践是使用通过 def 定义的允许使用文档字符串的常规函数。
4. 不要忘记列表推导式
有些人喜欢将 lambda 函数和高阶函数一起使用,比如 map 或 filter。思考下面用法示例:
>>> # 创建一个数字列表
>>> numbers = [2, 1, 3, -3]
>>> # 使用带有 lambda 函数的 map 函数
>>> list(map(lambda x: x * x, numbers))
[4, 1, 9, 9]
>>> # 使用带有 lambda 函数的 filter 函数
>>> list(filter(lambda x: x % 2, numbers))
[1, 3, -3]
我们可以使用可读性更强的列表推导式代替 lambda 函数。如下所示,我们使用列表推导式来创建相同的列表对象。如您所见,与列表推导式相比,之前将 map 或 filter 函数与 lambda 函数一起使用更麻烦。因此,在创建涉及高阶函数的列表时,应考虑使用列表推导式。
>>> # Use list comprehensions
>>> [x * x for x in numbers]
[4, 1, 9, 9]
>>> [x for x in numbers if x % 2]
[1, 3, -3]
相关文章:
【python学习笔记】 :Lambda 函数
Lambda 函数是 Python 中的匿名函数。有些人将它们简称为lambdas,它们的语法如下: lambda arguments: expressionlambda 关键字可以用来创建一个 lambda 函数,紧跟其后的是参数列表和用冒号分割开的单个表达式。例如,lambda x: 2…...
Nginx的proxy buffer参数设置
1. proxy_buffering 语法:proxy_buffering on|off 默认值:proxy_buffering on 上下文:http,server,location作用:该指令开启从后端被代理服务器的响应body缓冲。 如果proxy_buffering开启,nginx假定被代理的后端服务器会以最…...
SPI简介与实例分析
SPI简介 SPI 协议是由Motorola提出的通讯协议 (Serial Peripheral Interface) ,是一种高速全双工的串行通信总线。 SPI 通讯使用 3 条总线 :SCK、 MOSI、 MISO ,以及若干片选线(SS、CS、NSS)。 主机要和哪个从机通信,就把对应的…...
通过基于pgsql的timescaleDB的time_bucket函数实现自定义聚合粒度
1、自己写的不完全满足要求的实现方式 with tb_tmp as (select *, //计算该时间距离第一天有多少天((extract(epoch from create_time) /3600/24)::integer) as ct_ifrom test.test_salary )select min(a.create_time) as create_time,sum(a.salary) from (select *,//移动数据…...
一台电脑安装26个操作系统(windows,macos,linux)
首先看看安装了哪些操作系统1-4: windows系统 四个5.Ubuntu6.deepin7.UOS家庭版8.fydeOS9.macOS10.银河麒麟11.红旗OS12.openSUSE Leap13.openAnolis14.openEuler(未安装桌面UI)15.中标麒麟(NeoKylin)16.centos17.debian Edu18.fedora19.oraclelinux20.R…...
dockerfile文件
dockerfile文件内容 Form ip端口/centos:regular ENV JAVA_HOME /E:/Program Files/Java/jdk1.8.0_351 ENV PATH $JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH ENV LANG en_US.UTF-8 ENV LANGUAGE en_US:en ENV LC_ALL en_US.UTF-8 WORKDIR /opt COPY target/fast.jar /op…...
视觉SLAM ch11回环检测
回环检测的关键:如何有效的检测出相机经过同一个地方。如果成功的检测到可以为后端的位姿图提供更多有效数据,得到全局一致的估计。 回环检测提供了当前数据和所有历史数据的关联,还可以用回环检测进行重定位。 具体方法: 一&am…...
关于Ubuntu20.04文件系统思考
文章目录问题产生Ubuntu文件系统中普通用户可读写地址Ubuntu文件系统Ubuntu文件系统详解一级目录二级目录查找Ubuntu中软件安装位置Ubuntu修改文件权限问题产生 使用electron框架开发桌面端跨平台软件时,当开发完成的程序部署到Ubuntu上,系统无法产生日…...
内嵌于球的等边三棱柱
( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 做一个网络让输入只有3个节点,每个训练集里有两张图片,让B的训练集全为0,排列组合A,观察迭代次数平均值的变化。共完成了64组,但只有12组不同的迭代次数。 差值结构 A-B 迭代次…...
论文解读 | [CVPR2020] ContourNet:向精确的任意形状场景文本检测迈出进一步
目录 1 研究背景和目的 1.1 主要贡献: 1.2 两个挑战: 2 ContourNet 3 方法论 3.1 Adaptive-RPN 3.2 LOTM 3.3 点重定位算法 4 实验和结果 论文地址:ContourNet: Taking a Further Step toward Accurate Arbitrary-shaped Scene Tex…...
干货分享|数据可视化报表制作技巧
脑中想得再好,也要看最终的效果呈现。但偏偏有些用户分析思维不差,就是数据分析报表的制作拖了后腿,导致始终无法完美呈现数据可视化分析效果。本文将总结奥威BI软件上的常用的数据可视化报表制作技巧,供大家随时查阅。 BI数据可…...
Longhorn,企业级云原生容器分布式存储 - 备份与恢复
Longhorn,企业级云原生容器分布式存储 - 备份与恢复快照手动快照周期性快照和备份使用 Longhorn UI 设置周期性快照使用 StorageClass 设置 Recurring Jobs分离卷时允许 Recurring Job容灾卷创建容灾(DR)卷备份设置备份目标使用阿里云OSS备份存储准备工作为 S3 兼容…...
亿级高并发电商项目-- 实战篇 --万达商城项目 十(安装与配置Elasticsearch和kibana、编写搜索功能、向ES同步数据库商品数据)
亿级高并发电商项目-- 实战篇 --万达商城项目搭建 一 (商家端与用户端功能介绍、项目技术架构、数据库表结构等设计) 亿级高并发电商项目-- 实战篇 --万达商城项目搭建 一 (商家端与用户端功能介绍、项目技术架构、数据库表结构等设计&#x…...
windwos安装spring-cloud-alibaba-nacos
windwos安装spring-cloud-alibaba-nacos前言一、预备环境二、下载源码或者安装包1.启动2.关闭总结前言 这个快速开始手册是帮忙您快速在您的电脑上,下载、安装并使用 Nacos。 一、预备环境 Nacos 依赖 Java 环境来运行。如果您是从代码开始构建并运行Nacos&#x…...
Spring Boot 项目如何统一结果,统一异常,统一日志
1 统一结果返回目前的前后端开发大部分数据的传输格式都是json,因此定义一个统一规范的数据格式有利于前后端的交互与UI的展示。1.1 统一结果的一般形式是否响应成功;响应状态码;状态码描述;响应数据;其他标识符&#…...
Ubuntu下用Lean源码编译openwrt及一行命令u盘启动openwrt安装x86硬盘上
Ubuntu下用Lean源码编译openwrt 源码地址:https://github.com/coolsnowwolf/lede 1:首先微软云服务器装好 Ubuntu 64bit,推荐 Ubuntu 20.04 LTS x64,免费一年。ip设置在地球某处。总结就是每一步需要下载的都得下载完,…...
JavaScript Number 对象
JavaScript 是一门非常强大的编程语言,它提供了许多内置对象来帮助开发者在编写 JavaScript 应用时更轻松地处理数据。其中一个非常有用的对象是 JavaScript Number 对象,它可以帮助我们处理数值类型的数据,例如整数和浮点数。在本文中&#…...
【原创】java+swing+mysql银行ATM管理系统
本文主要介绍使用javaswingmysql去设计一个银行ATM管理系统,模仿实现存款、取款、转账、余额查询等功能。 功能分析: 隐含ATM管理系统一般分为管理员和用户角色,管理员可以进行用户管理、账单管理,用户可以进行转取存款等功能如…...
博弈论--总结
博弈分类 按照是否对外产出或消耗 零和博弈:博弈过程作为整体对外无产出也无消耗。非零和博弈:博弈过程作为整体对外有产出或有消耗。 按照博弈参与人数 1人博弈2人博弈3人博弈n人博弈 按照博弈是否重复 注:同一规则的同一博弈过程反复…...
AMBA低功耗接口规范(Low Power Interface Spec)
1.简介 AMBA提供的低功耗接口,用于实现power控制功能。目前AMBA里面包含2种低功耗接口: Q-Channel:实现简单的power控制,如上电,下电。 P-Channel:实现复杂的power控制,如全上电,半上…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...
2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案
一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...
