数据结构时间空间复杂度笔记
🕺作者: 迷茫的启明星
本篇内容:数据结构时间空间复杂度笔记
😘欢迎关注:👍点赞🙌收藏✍️留言
🏇家人们,码字不易,你的👍点赞🙌收藏❤️关注对我真的很重要,有问题可在评论区提出,感谢阅读!!!
持续更新中~

文章目录
- 1.算法效率
- 1.1 如何衡量一个算法的好坏
- 1.2 算法的复杂度
- 1.3 复杂度在校招中的考察
- 2.时间复杂度
- 2.1 时间复杂度的概念
- 2.2 大O的渐进表示法
- 2.3常见时间复杂度计算举例
- 3.空间复杂度
- 4.常见时间复杂度
- 复杂度oj练习
1.算法效率
1.1 如何衡量一个算法的好坏
如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:
long long Fib(int N) {if(N < 3)return 1;return Fib(N-1) + Fib(N-2); }斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?
1.2 算法的复杂度
算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
1.3 复杂度在校招中的考察
2.时间复杂度
2.1 时间复杂度的概念
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知
道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。// 请计算一下Func1中++count语句总共执行了多少次? void Func1(int N) { int count = 0; for (int i = 0; i < N ; ++ i) { for (int j = 0; j < N ; ++ j) { ++count; } } for (int k = 0; k < 2 * N ; ++ k) { ++count; } int M = 10; while (M--) { ++count; } printf("%d\n", count); }Func1 执行的基本操作次数 :
- N = 10 F(N) = 130
- N = 100 F(N) = 10210
- N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这
里我们使用大O的渐进表示法。
2.2 大O的渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:O(N2)
- N = 10 F(N) = 100
- N = 100 F(N) = 10000
- N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
2.3常见时间复杂度计算举例
实例1:
// 计算Func2的时间复杂度? void Func2(int N) {int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count; }int M = 10;while (M--){++count;}printf("%d\n", count); }实例1基本操作执行了2N+10次
解析:第一个for循环次数为2N,第二个循环次数为10次
实例2:
// 计算Func3的时间复杂度? void Func3(int N, int M) {int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;}printf("%d\n", count); }实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
实例3:
// 计算Func4的时间复杂度? void Func4(int N) {int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count); }实例3基本操作执行了100次,通过推导大O阶方法,因为是常数项,时间复杂度为 O(1)
实例4:
// 计算strchr的时间复杂度? const char * strchr ( const char * str, int character );实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
解析:strchr函数返回查找一个字符串中第一个出现character的位置的指针
实例5:
// 计算冒泡排序的时间复杂度? void BubbleSort(int* a, int n) {assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;} } //没有exchange就是最坏情况实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)
实例6:
// 计算二分查找的时间复杂度? int BinarySearch(int* a, int n, int x) {assert(a);int begin = 0;int end = n-1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end-begin)>>1);if (a[mid] < x)begin = mid+1;else if (a[mid] > x)end = mid-1;elsereturn mid;}return -1; }实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。
推导:
实例7:
// 计算阶乘递归Fac的时间复杂度? long long Fac(size_t N) { if(0 == N) return 1; return Fac(N-1)*N; }实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
实例8:
// 计算斐波那契递归Fib的时间复杂度? long long Fib(size_t N) {if(N < 3)return 1;return Fib(N-1) + Fib(N-2); }实例8通过计算分析发现基本操作递归了2N次,时间复杂度为O(2N)。
3.空间复杂度
空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
实例1:
// 计算BubbleSort的空间复杂度? void BubbleSort(int* a, int n) {assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;} }实例1中使用了常数个额外空间,所以空间复杂度为 O(1)
实例2:
// 计算Fibonacci的空间复杂度? // 返回斐波那契数列的前n项 long long* Fibonacci(size_t n) {if(n==0)return NULL;long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray; }实例2动态开辟了N个空间,空间复杂度为 O(N)
实例3:
// 计算阶乘递归Fac的空间复杂度? long long Fac(size_t N) {if(N == 0)return 1;return Fac(N-1)*N; }实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)
4.常见时间复杂度
一般算法常见的复杂度如下:


复杂度oj练习
3.1消失的数字OJ链接:https://leetcode-cn.com/problems/missing-number-lcci/
int missingNumber(int* nums, int numsSize){int val=0;for(int i=0;i<numsSize;i++){val^=nums[i];}for(int i=0;i<numsSize+1;i++){val^=i;}return val;
}
使用异或的思想
3.2 旋转数组OJ链接:https://leetcode-cn.com/problems/rotate-array/

思路三:开辟新空间
void rotate(int* nums, int numsSize, int k){k=k%numsSize;int *c=(int *)malloc(sizeof(int)*numsSize);for(int i=0;i<k;i++){c[i]= nums[numsSize-k+i];}for(int i=k;i<numsSize;i++){c[i]=nums[i-k];}for(int i=0;i<numsSize;i++){nums[i]= c[i];}
}
相关文章:
数据结构时间空间复杂度笔记
🕺作者: 迷茫的启明星 本篇内容:数据结构时间空间复杂度笔记 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇家人们,码字不易,你的👍点赞🙌收藏❤…...
基于注意力的知识蒸馏Attention Transfer原理与代码解析
paper:Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfercode:https://github.com/megvii-research/mdistiller/blob/master/mdistiller/distillers/AT.py背景一个流行的假设是存…...
利尔达在北交所上市:总市值突破29亿元,叶文光为董事长
2月17日,利尔达科技集团股份有限公司(下称“利尔达”,BJ:832149)在北京证券交易所上市。本次上市,利尔达的发行价格为5.00元/股,发行数量为1980万股,发行市盈率为12.29倍,募资总额为…...
C#操作字符串方法 [万余字总结 · 详细]
C#操作字符串方法总结C#常用字符串函数大全C#常用字符串操作方法C#操作字符串方法总结C#常用字符串函数大全 Compare 比较字符串的内容,考虑文化背景(场所),确定某些字符是否相等 CompareOrdinal 与Compare一样,但不考虑文化背景 Format 格…...
极兔一面:10亿级ES海量搜索狂飙10倍,该怎么办?
背景说明: ES高性能全文索引,如果不会用,或者没有用过,在面试中,会非常吃亏。 所以ES的实操和底层原理,大家要好好准备。 另外,ES调优是一个非常、非常核心的面试知识点,大家要非…...
【Mysql基础 —— SQL语句(一)】
文章目录概述使用启动/停止mysql服务连接mysql客户端数据模型SQLSQL语句分类DDL数据库操作表操作查询创建数据类型修改删除DML添加数据修改数据删除数据DQL基础查询条件查询聚合函数分组查询排序查询分页查询执行顺序DCL管理用户权限控制概述 数据库(Database&#…...
华为OD机试 - 新员工座位安排系统(Python) | 机试题算法思路
最近更新的博客 华为OD机试 - 招聘(Python) | 备考思路,刷题要点,答疑 【新解法】华为OD机试 - 五键键盘 | 备考思路,刷题要点,答疑 【新解法】华为OD机试 - 热点网络统计 | 备考思路,刷题要点,答疑 【新解法】华为OD机试 - 路灯照明 | 备考思路,刷题要点,答疑 【新解…...
MySQL - 介绍
前言 本篇介绍认识MySQL,重装mysql操作 如有错误,请在评论区指正,让我们一起交流,共同进步! 本文开始 1.什么是数据库? 数据库: 一种通过SQL语言操作管理数据的软件; 重装数据库的卸载数据库步骤 : ① 停止MySQL服…...
ChatGPT国内镜像站初体验:聊天、Python代码生成等
ChatGPT国内镜像站初体验,聊天、Python代码生成。 (本文获得CSDN质量评分【92】)【学习的细节是欢悦的历程】Python 官网:https://www.python.org/ Free:大咖免费“圣经”教程《 python 完全自学教程》,不仅仅是基础那么简单………...
SAP数据导入工具(LSMW) 超级详细教程(批量导入内部订单)
目录 第一步:记录批导步骤编辑数据源对应字段 第二步:维护数据源 第三步:维护数据源对应字段(重要) 第四步:维护数据源关系。 第五步:维护数据源与导入字段的对应关系。 第六步࿰…...
第9天-商品服务(电商核心概念,属性分组开发及分类和品牌的级联更新)
1.电商核心概念 1.1.SPU与SKU SPU:Standard Product Unit(标准化产品单元) 是商品信息聚合的最小单位,是一组可复用、易检索的标准化信息的集合,该集合描述了一个 产品的特性。 决定商品属性的值 SKU:Stock…...
动漫人物眼睛画法
本期的动漫绘画课程教大家来学习动漫人物眼睛画法,结合板绘软件从草稿开始一步步教你画出动漫人物眼睛,不用报动漫培训班也能学会,快来跟着本期的动漫人物眼睛画法教程试试吧! 动漫人物眼睛画法步骤教程: 注意&#x…...
张晨光-JAVA零基础保姆式JDBC技术教程
JDBC文档 JDBC概述 JDBC概述 Java DataBase Connectivity Java 数据库连接技术 JDBC的作用 通过Java语言操作数据库,操作表中的数据 SUN公司为**了简化、**统一对数据库的操作,定义了一套Java操作数据库的规范,称之为JDBC JDBC的本质 是官方…...
华为OD机试 - 最多提取子串数目(Python)
最多提取子串数目 题目 给定由 [a-z] 26 个英文小写字母组成的字符串 A 和 B,其中 A 中可能存在重复字母,B 中不会存在重复字母 现从字符串 A 中按规则挑选一些字母,可以组成字符串 B。 挑选规则如下: 1) 同一个位置的字母只能被挑选一次 2) 被挑选字母的相对先后顺序不…...
LeetCode-1237. 找出给定方程的正整数解【双指针,二分查找】
LeetCode-1237. 找出给定方程的正整数解【双指针,二分查找】题目描述:解题思路一:双指针。首先我们不管f是什么,即function_id等于什么不管。但是我们可以调用customfunction中的f函数,然后我们遍历x,y(1 < x, y &l…...
广度优先搜索算法 - 迷宫找路
广度优先搜索算法1 思考问题1.1 这个迷宫需不需要指定入口和出口?2 先粗略实现2.1 源码2.2 源码解释3 优化代码3.1 优化读取文件部分3.2 增加错误处理4 再优化-让程序变得更加灵活4.1 用户外部可以循环输入入口和出口5 完整代码这是一个提问者的提出的问题ÿ…...
泡脚材料简记
文章目录一般条件中药包(药粉)泡脚丸中药包(药材)艾叶生姜益母草藏红花食盐花椒白醋柠檬藿香泡脚私方紫苏叶、白术、白芍、黄芪、青皮、柴胡、夜交藤、丹参、当归,每种各10g艾叶、花椒、肉桂、桂枝、红花干姜30克、小茴…...
【计算机网络】因特网概述
文章目录因特网概述网络、互联网和因特网互联网历史与ISP标准化与RFC因特网的组成三种交换方式电路交换分组交换和报文交换三种交换方式的对比与总结计算机网络的定义和分类计算机网络的定义计算机网络的分类计算机网络的性能指标速率带宽吞吐量时延时延带宽积往返时间利用率丢…...
STC单片机 VS/HX1838红外接收和发送实验
STC单片机 VS/HX1838红外接收和发送实验 📌相关篇《STC单片机获取红外解码从串口输出》🔨所使用的红外接收头VS1838 📋VS1838引脚定义🌿5MM发射头,940nm红外发射二极管 红外遥控发射头。(外观看起来和普通的发光二极管没有什么差异,购买时需要注意确认)。 🔰采用的…...
前端开发常用案例(一)
前端开发常用案例1.实现三角形百度热榜样式分页效果小米商城自动轮播图效果二级下拉菜单效果时间轴效果展示音乐排行榜效果鼠标移入文字加载动画鼠标悬停缩放效果1.实现三角形 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践
01技术背景与业务挑战 某短视频点播企业深耕国内用户市场,但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大,传统架构已较难满足当前企业发展的需求,企业面临着三重挑战: ① 业务:国内用户访问海外服…...
RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上
一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema,不需要复杂的查询,只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 :在几秒钟…...
计算机系统结构复习-名词解释2
1.定向:在某条指令产生计算结果之前,其他指令并不真正立即需要该计算结果,如果能够将该计算结果从其产生的地方直接送到其他指令中需要它的地方,那么就可以避免停顿。 2.多级存储层次:由若干个采用不同实现技术的存储…...
中科院1区顶刊|IF14+:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点
中科院1区顶刊|IF14:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点 当下,免疫与代谢性疾病的关联研究已成为生命科学领域的前沿热点。随着研究的深入,我们愈发清晰地认识到免疫系统与代谢系统之间存在着极为复…...





