机器学习---facebook的案例学习
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sbn
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
# 使用pandas读取csv格式的文件
'''
数据量过多,使用数据过多会计算较慢,所以使用较少数据进行学习
'''
trainData=pd.read_csv("train.csv")
# 使用 query 查询出部分数据 71664
trainData = trainData.query("x>2.0 & x<2.5 & y>2.0 &y<2.5")# 去掉出现次数较少的place 使用group分组
# 统计出出现的次数
trainDatacount=trainData.groupby("place_id").count()# 选择出出现次数大于3的t
trainDatacount= trainDatacount[trainDatacount["row_id"]>3]
#将低于3的地方清理掉
trainData = trainData[trainData["place_id"].isin(trainDatacount.index)]#数据处理是关键
#修改时间 将绝对时间改变为可以使用的时间----进行训练时可以使用到时间
time=pd.to_datetime(trainData["time"],unit="s")
time=pd.DatetimeIndex(time)
trainData["day"]=time.day
trainData["hour"]=time.hour
trainData["weekday"]=time.weekday
# 确定特征值和目标值
x = trainData[["x","y","accuracy","hour","day","weekday"]]
y = trainData["place_id"]
# 划分训练集和测试集 使用 sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=20,train_size=0.25)
# 特征处理#实例化转换器----将数据标准化或者归一化
transfer=StandardScaler()
# 将数据标准化
x_train=transfer.fit_transform(x_train)
x_test=transfer.transform(x_test)
# 进行模型训练
# 实例化一个模型对象
estimator = KNeighborsClassifier()
# 网格搜索,选出结果最好的参数
param_grid={"n_neighbors":[1,3,5,7,9]}
estimator= GridSearchCV(estimator,param_grid=param_grid,cv=10,n_jobs=-1)
# 模型训练
estimator.fit(x_train,y_train)
# 模型评估
print(estimator.best_estimator_)
print(estimator.best_params_)
print(estimator.best_score_)
print(estimator.predict(x_test))相关文章:
机器学习---facebook的案例学习
import pandas as pd import matplotlib.pyplot as plt import seaborn as sbn from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier # 使用pandas读…...
OpenMMLab MMDetectionV3.1.0-SAM(环境安装、模型测试、训练以及模型后处理工具)
OpenMMLab Playground 概况 当前通用目标检测的研究方向正在朝着大型多模态模型发展。除了图像输入之外,最近的研究成果还结合了文本模式来提高性能。添加文本模态后,通用检测算法的一些非常好的属性开始出现,例如: 可以利用大量…...
ios_base::out和ios::out、ios_base::in和ios::in、ios_base::app和ios::app等之间有什么区别吗?
2023年8月2日,周三晚上 今天我看到了这样的两行代码: std::ofstream file("example.txt", std::ios_base::out);std::ofstream file("example.txt", std::ios::out);这让我产生了几个疑问: 为什么有时候用ios_base::o…...
PostgreSQL 使用SQL
发布主题 设置发布为true 这个语句是针对 PostgreSQL 数据库中的逻辑复制功能中的逻辑发布(Logical Publication)进行设置的。 PostgreSQL 中,逻辑复制是一种基于逻辑日志的复制方法,允许将数据更改从一个数据库实例复制到另一…...
Shell编程基础(十四)文本三剑客(grep)
文本三剑客(grep) 使用场景基本使用返回值参数 使用场景 主要用于查找,过滤文本数据;该数据可以来自文件,也可以来自管道流等等。 grep除了原有的实现,后来还出现了以下扩展实现 egrep:支持扩展…...
Linux root用户执行修改密码命令,提示 Permission denied
问题 linux系统中(ubuntu20),root用户下执行passwd命令,提示 passwd: Permission denied ,如下图: 排查 1.执行 ll /usr/bin/passwd ,查看文件权限是否正确,正常情况是 -rwsr-xr…...
Java面向对象学习第三部分
一、Static修饰符 static是静态的意思,基本概念如下: Static分类: 一般我们分类都是按照是否使用static修饰进行分类。分为静态变量(类变量)、实例变量。 静态变量和实例变量的比较: 比较,…...
python+vue生成条形码码并展示
需求 最近想做一个小工具,大概要实现这样的效果:后端生成条形码后,不保存到服务器,直接返回给前端展示。 大概思路是,通过 python-barcode库 生成条码的字节流,生成字节流后直接编码成base64格式返回给前…...
在线高精地图生成算法调研
1.HDMapNet 整体的网络架构如图所示,最终的Decoder输出三个分支,一个语义分割,一个embedding嵌入分支,一个方向预测。然后通过后处理将这些信息处理成向量化的道路表示。 img2bev的方式之前有IPM,通过假设地面的高度都…...
【干货】商城系统的重要功能特性介绍
电子商务的快速发展,商城系统成为了企业开展线上销售的重要工具。一款功能强大、用户友好的商城系统能够有效提升企业的销售业绩,提供良好的购物体验。下面就商城系统的重要功能特性作一些简单介绍,帮助企业选择合适的系统,打造成…...
MYSQL06高级_为什么使用索引、优缺点、索引的设计、方案、聚簇索引、联合索引、注意事项
文章目录 ①. 为什么使用索引②. 索引及其优缺点③. InnoDb - 索引的设计④. InnoDb中的索引方案⑤. 索引 - 聚簇索引⑥. 索引 - 二级索引⑦. B树索引的注意事项⑧. MyISAM中索引方案 ①. 为什么使用索引 ①. 索引是存储引擎用于快速找到数据记录的一种数据结构,就好比去图书馆…...
LeetCode 130. 被围绕的区域
题目链接:130. 被围绕的区域 题目描述 给你一个 m x n 的矩阵 board ,由若干字符 ‘X’ 和 ‘O’ ,找到所有被 ‘X’ 围绕的区域,并将这些区域里所有的 ‘O’ 用 ‘X’ 填充。 示例1: 输入:board [[“…...
python中2等于2.0吗,python中【1:2】
本篇文章给大家谈谈python中2等于2.0吗,以及python中【1:2】,希望对各位有所帮助,不要忘了收藏本站喔。 变量和赋值 Python中的变量不需要声明, 直接定义即可. 会在初始化的时候决定变量的 “类型” 使用 来进行初始化和赋值操作 定义变量时…...
【2023年11月第四版教材】《第2章-信息技术发展(第一部分)》
《第2章-信息技术发展(第一部分)》 章节说明1 计算机软硬件2 计算机网络2.1 网络的作用范围2.2 OSI模型2.3 广域网协议2.4 网络协议2.5 TCP/IP2.6 软件定义网络(SDN)2.7 第五代移动通信技术 章节说明 大部分为新增内容࿰…...
【CSS】说说对BFC的理解
目录 一、概念 二、BFC的布局规则 三、设置BFC的常用方式 四、BFC的应用场景 1、解决浮动元素令父元素高度坍塌的问题 2、解决非浮动元素被浮动元素覆盖问题 3、解决外边距垂直方向重合的问题 五、总结 一、概念 我们在页面布局的时候,经常出现以下情况&am…...
ES6学习-Class类
class constructor 构造方法 this 代表实例对象 方法之间不需要逗号分隔,加了会报错。 typeof Point // "function" Point Point.prototype.constructor // true类的数据类型就是函数,类本身就指向构造函数。 类的所有方法都定义在类的pr…...
C语言经典小游戏之扫雷(超详解释+源码)
“少年气,是历尽千帆举重若轻的沉淀,也是乐观淡然笑对生活的豁达!” 今天我们学习一下扫雷游戏怎么用C语言来实现! 扫雷小游戏 1.游戏介绍2.游戏准备3.游戏实现3.1生成菜单3.2游戏的具体实现3.2.1初始化棋盘3.2打印棋盘3.3布置雷…...
算法leetcode|67. 二进制求和(rust重拳出击)
文章目录 67. 二进制求和:样例 1:样例 2:提示: 分析:题解:rust:go:c:python:java: 67. 二进制求和: 给你两个二进制字符串 a 和 b &a…...
【ASP.NET MVC】第一个登录页面(8)
一、准备工作 先从网上(站长之家、模板之家,甚至TB)下载一个HTML模板,要求一整套的CSS和必要的JS,比如下图: 登录页面的效果是: 首页: 利用这些模板可以减少前台网页的设计——拿来…...
使用Openoffice或LibreOffice实现World、Excel、PPTX在线预览
使用Openoffice或LibreOffice实现World、Excel、PPTX在线预览 预览方案使用第三方服务使用前端库转换格式 jodconverterjodconverter概述主要特性OpenOfficeLibreOffice jodconverter的基本使用添加依赖配置创建DocumentConverter实例上传与转换预览启动上传与预览World 与Spri…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
篇章二 论坛系统——系统设计
目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...
解析“道作为序位生成器”的核心原理
解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制,重点解析"道作为序位生成器"的核心原理与实现框架: 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...
leetcode73-矩阵置零
leetcode 73 思路 记录 0 元素的位置:遍历整个矩阵,找出所有值为 0 的元素,并将它们的坐标记录在数组zeroPosition中置零操作:遍历记录的所有 0 元素位置,将每个位置对应的行和列的所有元素置为 0 具体步骤 初始化…...
