当前位置: 首页 > news >正文

机器学习---facebook的案例学习

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as  sbn
from  sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing  import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
# 使用pandas读取csv格式的文件
'''
数据量过多,使用数据过多会计算较慢,所以使用较少数据进行学习
'''
trainData=pd.read_csv("train.csv")
# 使用 query 查询出部分数据 71664
trainData = trainData.query("x>2.0 & x<2.5 & y>2.0 &y<2.5")# 去掉出现次数较少的place  使用group分组
# 统计出出现的次数
trainDatacount=trainData.groupby("place_id").count()# 选择出出现次数大于3的t
trainDatacount= trainDatacount[trainDatacount["row_id"]>3]
#将低于3的地方清理掉
trainData = trainData[trainData["place_id"].isin(trainDatacount.index)]#数据处理是关键
#修改时间  将绝对时间改变为可以使用的时间----进行训练时可以使用到时间
time=pd.to_datetime(trainData["time"],unit="s")
time=pd.DatetimeIndex(time)
trainData["day"]=time.day
trainData["hour"]=time.hour
trainData["weekday"]=time.weekday
# 确定特征值和目标值
x = trainData[["x","y","accuracy","hour","day","weekday"]]
y = trainData["place_id"]
#  划分训练集和测试集  使用   sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=20,train_size=0.25)
# 特征处理#实例化转换器----将数据标准化或者归一化
transfer=StandardScaler()
# 将数据标准化
x_train=transfer.fit_transform(x_train)
x_test=transfer.transform(x_test)
# 进行模型训练
# 实例化一个模型对象
estimator = KNeighborsClassifier()
# 网格搜索,选出结果最好的参数
param_grid={"n_neighbors":[1,3,5,7,9]}
estimator= GridSearchCV(estimator,param_grid=param_grid,cv=10,n_jobs=-1)
# 模型训练
estimator.fit(x_train,y_train)
# 模型评估
print(estimator.best_estimator_)
print(estimator.best_params_)
print(estimator.best_score_)
print(estimator.predict(x_test))

相关文章:

机器学习---facebook的案例学习

import pandas as pd import matplotlib.pyplot as plt import seaborn as sbn from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier # 使用pandas读…...

OpenMMLab MMDetectionV3.1.0-SAM(环境安装、模型测试、训练以及模型后处理工具)

OpenMMLab Playground 概况 当前通用目标检测的研究方向正在朝着大型多模态模型发展。除了图像输入之外&#xff0c;最近的研究成果还结合了文本模式来提高性能。添加文本模态后&#xff0c;通用检测算法的一些非常好的属性开始出现&#xff0c;例如&#xff1a; 可以利用大量…...

ios_base::out和ios::out、ios_base::in和ios::in、ios_base::app和ios::app等之间有什么区别吗?

2023年8月2日&#xff0c;周三晚上 今天我看到了这样的两行代码&#xff1a; std::ofstream file("example.txt", std::ios_base::out);std::ofstream file("example.txt", std::ios::out);这让我产生了几个疑问&#xff1a; 为什么有时候用ios_base::o…...

PostgreSQL 使用SQL

发布主题 设置发布为true 这个语句是针对 PostgreSQL 数据库中的逻辑复制功能中的逻辑发布&#xff08;Logical Publication&#xff09;进行设置的。 PostgreSQL 中&#xff0c;逻辑复制是一种基于逻辑日志的复制方法&#xff0c;允许将数据更改从一个数据库实例复制到另一…...

Shell编程基础(十四)文本三剑客(grep)

文本三剑客&#xff08;grep&#xff09; 使用场景基本使用返回值参数 使用场景 主要用于查找&#xff0c;过滤文本数据&#xff1b;该数据可以来自文件&#xff0c;也可以来自管道流等等。 grep除了原有的实现&#xff0c;后来还出现了以下扩展实现 egrep&#xff1a;支持扩展…...

Linux root用户执行修改密码命令,提示 Permission denied

问题 linux系统中&#xff08;ubuntu20&#xff09;&#xff0c;root用户下执行passwd命令&#xff0c;提示 passwd: Permission denied &#xff0c;如下图&#xff1a; 排查 1.执行 ll /usr/bin/passwd &#xff0c;查看文件权限是否正确&#xff0c;正常情况是 -rwsr-xr…...

Java面向对象学习第三部分

一、Static修饰符 static是静态的意思&#xff0c;基本概念如下&#xff1a; Static分类&#xff1a; 一般我们分类都是按照是否使用static修饰进行分类。分为静态变量&#xff08;类变量&#xff09;、实例变量。 静态变量和实例变量的比较&#xff1a; 比较&#xff0c;…...

python+vue生成条形码码并展示

需求 最近想做一个小工具&#xff0c;大概要实现这样的效果&#xff1a;后端生成条形码后&#xff0c;不保存到服务器&#xff0c;直接返回给前端展示。 大概思路是&#xff0c;通过 python-barcode库 生成条码的字节流&#xff0c;生成字节流后直接编码成base64格式返回给前…...

在线高精地图生成算法调研

1.HDMapNet 整体的网络架构如图所示&#xff0c;最终的Decoder输出三个分支&#xff0c;一个语义分割&#xff0c;一个embedding嵌入分支&#xff0c;一个方向预测。然后通过后处理将这些信息处理成向量化的道路表示。 img2bev的方式之前有IPM&#xff0c;通过假设地面的高度都…...

【干货】商城系统的重要功能特性介绍

电子商务的快速发展&#xff0c;商城系统成为了企业开展线上销售的重要工具。一款功能强大、用户友好的商城系统能够有效提升企业的销售业绩&#xff0c;提供良好的购物体验。下面就商城系统的重要功能特性作一些简单介绍&#xff0c;帮助企业选择合适的系统&#xff0c;打造成…...

MYSQL06高级_为什么使用索引、优缺点、索引的设计、方案、聚簇索引、联合索引、注意事项

文章目录 ①. 为什么使用索引②. 索引及其优缺点③. InnoDb - 索引的设计④. InnoDb中的索引方案⑤. 索引 - 聚簇索引⑥. 索引 - 二级索引⑦. B树索引的注意事项⑧. MyISAM中索引方案 ①. 为什么使用索引 ①. 索引是存储引擎用于快速找到数据记录的一种数据结构,就好比去图书馆…...

LeetCode 130. 被围绕的区域

题目链接&#xff1a;130. 被围绕的区域 题目描述 给你一个 m x n 的矩阵 board &#xff0c;由若干字符 ‘X’ 和 ‘O’ &#xff0c;找到所有被 ‘X’ 围绕的区域&#xff0c;并将这些区域里所有的 ‘O’ 用 ‘X’ 填充。 示例1&#xff1a; 输入&#xff1a;board [[“…...

python中2等于2.0吗,python中【1:2】

本篇文章给大家谈谈python中2等于2.0吗&#xff0c;以及python中【1:2】&#xff0c;希望对各位有所帮助&#xff0c;不要忘了收藏本站喔。 变量和赋值 Python中的变量不需要声明, 直接定义即可. 会在初始化的时候决定变量的 “类型” 使用 来进行初始化和赋值操作 定义变量时…...

【2023年11月第四版教材】《第2章-信息技术发展(第一部分)》

《第2章-信息技术发展&#xff08;第一部分&#xff09;》 章节说明1 计算机软硬件2 计算机网络2.1 网络的作用范围2.2 OSI模型2.3 广域网协议2.4 网络协议2.5 TCP/IP2.6 软件定义网络&#xff08;SDN&#xff09;2.7 第五代移动通信技术 章节说明 大部分为新增内容&#xff0…...

【CSS】说说对BFC的理解

目录 一、概念 二、BFC的布局规则 三、设置BFC的常用方式 四、BFC的应用场景 1、解决浮动元素令父元素高度坍塌的问题 2、解决非浮动元素被浮动元素覆盖问题 3、解决外边距垂直方向重合的问题 五、总结 一、概念 我们在页面布局的时候&#xff0c;经常出现以下情况&am…...

ES6学习-Class类

class constructor 构造方法 this 代表实例对象 方法之间不需要逗号分隔&#xff0c;加了会报错。 typeof Point // "function" Point Point.prototype.constructor // true类的数据类型就是函数&#xff0c;类本身就指向构造函数。 类的所有方法都定义在类的pr…...

C语言经典小游戏之扫雷(超详解释+源码)

“少年气&#xff0c;是历尽千帆举重若轻的沉淀&#xff0c;也是乐观淡然笑对生活的豁达&#xff01;” 今天我们学习一下扫雷游戏怎么用C语言来实现&#xff01; 扫雷小游戏 1.游戏介绍2.游戏准备3.游戏实现3.1生成菜单3.2游戏的具体实现3.2.1初始化棋盘3.2打印棋盘3.3布置雷…...

算法leetcode|67. 二进制求和(rust重拳出击)

文章目录 67. 二进制求和&#xff1a;样例 1&#xff1a;样例 2&#xff1a;提示&#xff1a; 分析&#xff1a;题解&#xff1a;rust&#xff1a;go&#xff1a;c&#xff1a;python&#xff1a;java&#xff1a; 67. 二进制求和&#xff1a; 给你两个二进制字符串 a 和 b &a…...

【ASP.NET MVC】第一个登录页面(8)

一、准备工作 先从网上&#xff08;站长之家、模板之家&#xff0c;甚至TB&#xff09;下载一个HTML模板&#xff0c;要求一整套的CSS和必要的JS&#xff0c;比如下图&#xff1a; 登录页面的效果是&#xff1a; 首页&#xff1a; 利用这些模板可以减少前台网页的设计——拿来…...

使用Openoffice或LibreOffice实现World、Excel、PPTX在线预览

使用Openoffice或LibreOffice实现World、Excel、PPTX在线预览 预览方案使用第三方服务使用前端库转换格式 jodconverterjodconverter概述主要特性OpenOfficeLibreOffice jodconverter的基本使用添加依赖配置创建DocumentConverter实例上传与转换预览启动上传与预览World 与Spri…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

篇章二 论坛系统——系统设计

目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...

解析“道作为序位生成器”的核心原理

解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制&#xff0c;重点解析"道作为序位生成器"的核心原理与实现框架&#xff1a; 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...

leetcode73-矩阵置零

leetcode 73 思路 记录 0 元素的位置&#xff1a;遍历整个矩阵&#xff0c;找出所有值为 0 的元素&#xff0c;并将它们的坐标记录在数组zeroPosition中置零操作&#xff1a;遍历记录的所有 0 元素位置&#xff0c;将每个位置对应的行和列的所有元素置为 0 具体步骤 初始化…...