当前位置: 首页 > news >正文

音频信号处理笔记(一)

相关课程:【音频信号处理及深度学习教程】

文章目录

  • 0
  • 1 信号的时域分析
    • 1.1 分帧
      • 1.1.1 幅值包络
      • 1.1.2 均方根能量

0

信号的叠加:https://teropa.info/harmonics-explorer/

一个复杂信号分解成若干简单信号分量之和。不同个频率信号的叠加: 由于和差化积,会形成包络结构与精细结构。

image-20230130151227607

由上图可知,低频信号决定了信号的包络形状,高频信号决定其精细结构。

在语音识别中,主要通过信号的包络结构来区分不同音频信号,因此在识别领域更关注低频作用

1 信号的时域分析

1.1 分帧

image-20230130152419473

分帧:将信号按照时间尺度分割,每一段的长度就是长frame_size,分出n段,为的个数frame_num,如果不考虑重叠分帧,那么该信号总的采样点数为frame_size * frame_n um。

分帧重叠:为了让分后的信号更加平滑,需要重叠分帧,也就是下一帧中包含上一帧的采样点,那么包含的点数就是重叠长度hop_size。

分帧补零:帧的个数frame_num= 总样本数N / 重叠数hop_size(分不补零),因为的个数frame_num是整数为了不舍弃最后一帧不能凑成一个完整长的点,需要对信号补零。此时帧的个数frame num =(总样本数N - 帧长frame size)/ 重叠数hop _size(分补零)+1

1.1.1 幅值包络

幅值包络:依次寻找每一帧的幅值最大值,将每一帧中幅值最大值连起来就是幅值包络(响度、音频检测、音频分类)

image-20230218131627766

现提取第t帧的AE值,其中k是采样点数,t是序列数,K是每一帧的帧长,采样点k点在t k,(t+1) k-1

代码如下:

import librosa
import numpy as np
import librosa.display
from matplotlib import pyplot as pltwave_path_absolute = r"E:\VoiceDev\audio_data\music_piano.wav"
wave_path = "../audio_data/music_piano.wav"
# 1. 加载信号以及采样率
waveform, sample_rate = librosa.load(wave_path_absolute, sr=None)# 2. 定义AE函数,功能是取信号每一帧中幅值最值为该帧的包络
# 信号,每一帧长,重叠长度
def Calc_Amplitude_Envelope(waveform, frame_length, hop_length):# 如果按照帧长来分割信号,余下部分不能形成一个帧则需要补0if len(waveform) % hop_length != 0:# ?frame_num = int((len(waveform) - frame_length) / hop_length) + 1pad_num = frame_num * hop_length + frame_length - len(waveform)  # 补0个数waveform = np.pad(waveform, pad_width=(0, pad_num), mode="wrap")  # 补0操作frame_num = int((len(waveform) - frame_length) / hop_length) + 1waveform_ae = []for t in range(frame_num):current_frame = waveform[t * (frame_length - hop_length):t * (frame_length - hop_length) + frame_length]current_ae = max(current_frame)waveform_ae.append(current_ae)return np.array(waveform_ae)# 3. 设置参数:每一帧长1024,以50%的重叠率分帧,调用该函数
frame_size = 1024
hop_size = int(frame_size * 0.5)
waveform_AE = Calc_Amplitude_Envelope(waveform=waveform, frame_length=frame_size, hop_length=hop_size)# 4.绘制信号的幅值包络信息
frame_scale = np.arange(0, len(waveform_AE))
time_scale = librosa.frames_to_time(frame_scale, hop_length=hop_size)
plt.figure(figsize=(20, 10))
librosa.display.waveshow(waveform)
plt.plot(time_scale, waveform_AE, color='red')
plt.title("Amplitude_Envelope")
plt.show()

image-20230211205028744

image-20230211205035717

1.1.2 均方根能量

均方根能量(Root mean square energy)(响度、音频分段分类)

依次寻找每一帧中的RMSE,它的值为第t帧中每点幅值平方再取均值后开根号

image-20230218132027554

代码如下:

# 0. 预设环境
import librosa
import numpy as np
from matplotlib import pyplot as plt
import librosa.display# 1.加载信号
wave_path_absolute = r"E:\VoiceDev\audio_data\music_piano.wav"
wave_path = "../audio_data/music_piano.wav"
waveform, sample_rate = librosa.load(wave_path_absolute, sr=None)# 2.定义函数RMS,功能:计算每一帧的均方根能量
def Calc_RMS(waveform, frame_length, hop_length):# 如果按照帧长来分割信号,余下部分不能形成一个帧则需要补0if len(waveform) % hop_length != 0:# ?frame_num = int((len(waveform) - frame_length) / hop_length) + 1pad_num = frame_num * hop_length + frame_length - len(waveform)  # 补0个数waveform = np.pad(waveform, pad_width=(0, pad_num), mode="wrap")  # 补0操作frame_num = int((len(waveform) - frame_length) / hop_length) + 1waveform_rms = []for t in range(frame_num):current_frame = waveform[t * (frame_length - hop_length):t * (frame_length - hop_length) + frame_length]current_rms = np.sqrt(np.sum(current_frame**2) / frame_length)waveform_rms.append(current_rms)return waveform_rms# 3. 设置参数:每一帧长1024,以50%的重叠率分帧,调用该函数
frame_size = 1024
hop_size = int(frame_size * 0.5)
waveform_RMS = Calc_RMS(waveform=waveform, frame_length=frame_size, hop_length=hop_size)# 4.绘制图像
frame_scale = np.arange(0, len(waveform_RMS), step=1)
time_scale = librosa.frames_to_time(frame_scale, hop_length=hop_size)
plt.figure(figsize=(20, 10))
plt.plot(time_scale, waveform_RMS, color='red')
plt.title("Root-Mean-Square-Energy")
librosa.display.waveshow(waveform)
plt.show()# 5. 利用librosa.feature.rms绘制信号的RMS
waveform_RMS_librosa = librosa.feature.rms(y=waveform, frame_length=frame_size, hop_length=hop_size).T[1:,0]
plt.figure(figsize=(20, 10))
plt.plot(time_scale, waveform_RMS_librosa, color='red')
plt.title("Root-Mean-Square-librosa")
librosa.display.waveshow(waveform)
plt.show()bias = waveform_RMS_librosa - waveform_RMS
print(f"the bias is {bias}\n Congratulation!")

运行结果:红色线即均方根能量

image-20230218140824181

相关文章:

音频信号处理笔记(一)

相关课程:【音频信号处理及深度学习教程】 文章目录01 信号的时域分析1.1 分帧1.1.1 幅值包络1.1.2 均方根能量0 信号的叠加:https://teropa.info/harmonics-explorer/ 一个复杂信号分解成若干简单信号分量之和。不同个频率信号的叠加: 由于和差化积&a…...

【深度学习】模型评估

上一章——多分类问题和多标签分类问题 文章目录算法诊断模型评估交叉验证测试算法诊断 如果你为问题拟合了一个假设函数,我们应当如何判断假设函数是否适当拟合了?我们可以通过观察代价函数的图像,当代价函数达到最低点的时候,此…...

AcWing《蓝桥杯集训·每日一题》—— 3777 砖块

AcWing《蓝桥杯集训每日一题》—— 3777. 砖块 文章目录AcWing《蓝桥杯集训每日一题》—— 3777. 砖块一、题目二、解题思路三、解题思路本次博客我是通过Notion软件写的,转md文件可能不太美观,大家可以去我的博客中查看:北天的 BLOG&#xf…...

CleanMyMac X软件下载及详细功能介绍

mac平台的知名系统清理应用CleanMyMac在经历了一段时间的测试后,全新设计的X正式上线。与CleanMyMac3相比,新版本的UI设计焕然一新,采用了完全不同的风格。使用Windows电脑时,很多人会下载各类优化软件,而在Mac平台中&…...

pytorch零基础实现语义分割项目(一)——数据概况及预处理

语义分割之数据加载项目列表前言数据集概况数据组织形式数据集划分数据预处理均值与方差结尾项目列表 语义分割项目(一)——数据概况及预处理 语义分割项目(二)——标签转换与数据加载 语义分割项目(三&#xff09…...

ARM+LINUX嵌入式学习路线

嵌入式学习是一个循序渐进的过程,如果是希望向嵌入式软件方向发展的话,目前最常见的是嵌入式Linux方向,关注这个方向,大概分3个阶段: 1、嵌入式linux上层应用,包括QT的GUI开发 2、嵌入式linux系统开发 3、…...

echart在微信小程序的使用

echart在微信小程序的使用 echarts不显示在微信小程序 <!-- 微信小程序的echart的使用 --> <view class"container"><ec-canvas id"mychart-dom-bar" canvas-id"mychart-bar" ec"{{ ec }}"></ec-canvas> &l…...

51单片机最强模块化封装(5)

文章目录 前言一、创建timer文件,添加timer文件路径二、timer文件编写三、模块化测试总结前言 今天这篇文章将为大家封装定时器模块,定时器是工程项目中必不可少的,希望大家能够将定时器理解清楚并且运用自如。 一、创建timer文件,添加timer文件路径 这里的操作就不过多…...

链表学习之判断链表是否回文

链表解题技巧 额外的数据结构&#xff08;哈希表&#xff09;&#xff1b;快慢指针&#xff1b;虚拟头节点&#xff1b; 判断链表是否回文 要求&#xff1a;时间辅助度O(N)&#xff0c;空间复杂度O(1) 方法1&#xff1a;栈&#xff08;不考虑空间复杂度&#xff09; 遍历一…...

【Linux06-基础IO】4.5万字的基础IO讲解

前言 本期分享基础IO的知识&#xff0c;主要有&#xff1a; 复习C语言文件操作文件相关的系统调用文件描述符fd理解Linux下一切皆文件缓冲区文件系统软硬链接动静态库的理解和制作动静态编译 博主水平有限&#xff0c;不足之处望请斧正&#xff01; C语言文件操作 #再谈文件…...

c++协程库理解—ucontext组件实践

文章目录1.干货写在前面2.ucontext初接触3.ucontext组件到底是什么4.小试牛刀-使用ucontext组件实现线程切换5.使用ucontext实现自己的线程库6.最后一步-使用我们自己的协程库1.干货写在前面 协程是一种用户态的轻量级线程 首先我们可以看看有哪些语言已经具备协程语义&#x…...

英语基础-状语

1. 课前引语 1. 形容词使用场景 (1). 放在系动词后面作表语 The boy is handsome. (2). 放在名词前面做定语 I like this beautiful girl. (3). 放在宾语后面做补语 You make your father happy. 总结&#xff1a;形容词无论做什么&#xff0c;都离不开名词&#xff0c…...

目标检测笔记(八):自适应缩放技术Letterbox完整代码和结果展示

文章目录自适应缩放技术Letterbox介绍自适应缩放技术Letterbox流程自适应缩放Letterbox代码运行结果自适应缩放技术Letterbox介绍 由于数据集中存在多种不同和长宽比的样本图&#xff0c;传统的图片缩放方法按照固定尺寸来进行缩放会造成图片扭曲变形的问题。自适应缩放技术通…...

2023年全国最新高校辅导员精选真题及答案1

百分百题库提供高校辅导员考试试题、辅导员考试预测题、高校辅导员考试真题、辅导员证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 一、选择题 11.李某与方某签订房屋租赁合同期间&#xff0c;李某欲购买租赁房屋&#xff…...

【Python】Python读写Excel表格

简要版&#xff0c;更多功能参考资料1。1 Excel文件保存格式基础概念此处不提&#xff0c;详见资料1。Excel的文件保存格式有两种&#xff1a; xls 和 xlsx。如果你看不到文件后缀&#xff0c;按下图设置可见。xls是Office 2003及之前版本的表格的默认保存格式。xlsx 是 Excel …...

Python每日一练(20230218)

目录​​​​​​​ 1. 旋转图像 2. 解码方法 3. 二叉树最大路径和 1. 旋转图像 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在原地旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像…...

基于SSM框架的狼途汽车门店管理系统的设计与实现

基于SSM框架的狼途汽车门店管理系统的设计与实现 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取项目下载方式&#x1f345; 一、…...

视频监控流程图3

<html> <head> <meta http-equiv"Content-Type" content"text/html; charsetUTF-8"/> <link rel"stylesheet" type"text/css" href"visio.css"/> <title> 视频监控流程图 </title> <…...

Linux ARM平台开发系列讲解(CAN) 2.14.3 CANFD协议介绍

1. 概述 前面章节介绍了CAN2.0协议,CAN现在主要是用在汽车领域,随着CAN的发展, 又衍生除了CANFD协议,该协议是在CAN的基础之上进行了升级,CAN2.0的最高速率是1Mbps,有限的速率导致CAN总线上负载率变高,所以CANFD就出现了,CANFD目前最高支持10Mbps。除此之外,CANFD还拥…...

参考 | 给C盘 “搬家“

参考 | 给C盘 “搬家” 将在C盘准备 “搬家” 的 文件/文件夹 完整路径 copy 下来 e.g. 路径一 “C:\Users\你的用户名\AppData\Roaming\kingsoft” 将这个 文件/文件夹 CTRLX 剪切下来 注意: 剪切后, 不需要自己重新新建, 直接执行第三步 将这个 文件/文件夹 CTRLV 粘贴到你要…...

剑指 Offer 53 - II. 0~n-1中缺失的数字

原题链接 难度&#xff1a;easy\color{Green}{easy}easy 题目描述 一个长度为n-1的递增排序数组中的所有数字都是唯一的&#xff0c;并且每个数字都在范围0&#xff5e;n-1之内。在范围0&#xff5e;n-1内的n个数字中有且只有一个数字不在该数组中&#xff0c;请找出这个数字…...

分布式id

一、分布式系统 1.1 分布式系统的定义和应用场景 分布式系统是由多个独立的计算机节点协同工作&#xff0c;以共同完成一个任务的系统。这些节点通过网络进行通信和协调&#xff0c;共享计算和存储资源&#xff0c;从而实现对更大规模问题的处理和更高系统可用性的要求。 分…...

创意编程py模拟题

前言&#xff1a;好久没写博客了&#xff0c;来水好好写一篇 注&#xff1a;本篇文章为py&#xff0c;不是c 1、敲七 版本1 题目&#xff1a; 题目描述 输出7和7的倍数&#xff0c;还有包含7的数字例如&#xff08;17&#xff0c;27&#xff0c;37…70&#xff0c;71&#…...

uniapp中条件编译

官方&#xff1a;https://uniapp.dcloud.net.cn/tutorial/platform.html#%E8%B7%A8%E7%AB%AF%E5%85%BC%E5%AE%B9 #ifndef H5 代码段… #endif 表示除了H5其他都可以编译 #ifdef H5 代码段… #endef 表示只能编译H5&#xff0c;其他的都不能编译 其他编译平台请查看官方文档。 …...

封装 YoloV5 detect.py 成 Python 库以供 python 程序使用

本项目地址 Github 本项目地址 Github Introduction YoloV5 作为 YoloV4 之后的改进型&#xff0c;在算法上做出了优化&#xff0c;检测的性能得到了一定的提升。其特点之一就是权重文件非常的小&#xff0c;可以在一些配置更低的移动设备上运行&#xff0c;且提高速度的同时…...

PostgreSQL , PostGIS , 球坐标 , 平面坐标 , 球面距离 , 平面距离

标签 PostgreSQL , PostGIS , 球坐标 , 平面坐标 , 球面距离 , 平面距离 背景 PostGIS中有两种常用的空间类型geometry和geography&#xff0c;这两种数据类型有什么差异&#xff0c;应该如何选择&#xff1f; 对于GIS来说&#xff0c;首先是坐标系&#xff0c;有两种&#…...

K3S 系列文章-5G IoT 网关设备 POD 访问报错 DNS ‘i/o timeout‘分析与解决

开篇 《K3s 系列文章》《Rancher 系列文章》 问题概述 20220606 5G IoT 网关设备同时安装 K3S Server, 但是 POD 却无法访问互联网地址&#xff0c;查看 CoreDNS 日志提示如下&#xff1a; ... [ERROR] plugin/errors: 2 update.traefik.io. A: read udp 10.42.0.3:38545-&…...

社会工程学介绍

目录前言手段和术语假托在线聊天/电话钓鱼下饵&#xff08;Baiting&#xff09;等价交换同情心尾随&#xff08;Tailgating or Piggybacking&#xff09;社交工程学的演进钓鱼式攻击电脑蠕虫垃圾邮件特别人物总结前言 在信息安全方面&#xff0c;社会工程学是指对人进行心理操…...

干货 | 有哪些安慰剂按钮的设计?

仔细观察我们的生活&#xff0c;你会发现处处都是安慰剂按钮&#xff0c;ATM的点钞声、开启空调的呼呼声&#xff0c;这些都对用户心里产生了有意的引导作用&#xff0c;当你打开了空调按钮&#xff0c;先播放声音会让你感觉你按下的按钮起到了作用。 我们的大脑不喜欢杂乱无章…...

LeetCode 每日一题 2023/2/13-2023/2/19

记录了初步解题思路 以及本地实现代码&#xff1b;并不一定为最优 也希望大家能一起探讨 一起进步 目录2/13 1234. 替换子串得到平衡字符串2/14 1124. 表现良好的最长时间段2/15 1250. 检查「好数组」2/16 2341. 数组能形成多少数对2/17 1139. 最大的以 1 为边界的正方形2/18 1…...

wordpress 安装要求/百度经验app下载

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼修改下拉文字的颜色教程(2种方法)补充修改背景透明第1种方法1.反编辑systemUI.apk2.打开res\layout下的tw_status_bar_expanded.xml3.找到android:textColor"color/notification_category_color"(以上这个编码有很多,全部…...

网站建设案例基本流程图/枸橼酸西地那非片的作用及功效

sudo npm install -g n固定版本&#xff1a;sudo n 12.18.3&#xff1b; 最新版本&#xff1a;n lastest&#xff1b; 稳定版本&#xff1a;n stable...

用6数字域名做网站的是/深圳网站提升排名

用 64bit 的 Python 调用 32bit 的 Dll 会出错 转载于:https://www.cnblogs.com/blog-3123958139/p/5574501.html...

html简单动画代码/新塘网站seo优化

为什么80%的码农都做不了架构师&#xff1f;>>> 本原创文章属于《Linux大棚》博客。 博客地址为http://roclinux.cn。 文章作者为roc。 原文&#xff1a;16 Linux Server Monitoring Commands You Really Need To Know 为了让大家能更直观的学习这些命令&#xff…...

图片设计师网站/百度数据库

SSH&#xff08;安全外壳&#xff09;是用于基于Linux的系统&#xff0c;路由器&#xff0c;交换机&#xff0c;防火墙&#xff0c;设备和其他资产的最常见的远程管理协议。尽管SSH守护程序提供了出色的强化功能&#xff0c;以增强您的身份验证方法和访问控制&#xff0c;但SSH…...

有打赏功能的网站/站内推广的方法

http://www.pc6.com/edu/81140.html...