当前位置: 首页 > news >正文

怎么做网页长图/镇海seo关键词优化费用

怎么做网页长图,镇海seo关键词优化费用,网站备案一个主体,网站做软件有哪些深度学习的核心思想是通过多层次的神经网络结构,逐步抽取和表示数据中的高级特征,从而实现对复杂数据模式的学习和识别。 神经网络结构: 深度学习使用多层次的神经网络,包括输入层、隐藏层和输出层。这些网络结构允许模型自动学习…

深度学习的核心思想是通过多层次的神经网络结构,逐步抽取和表示数据中的高级特征,从而实现对复杂数据模式的学习和识别。

神经网络结构: 深度学习使用多层次的神经网络,包括输入层、隐藏层和输出层。这些网络结构允许模型自动学习数据中的特征层次。
反向传播算法: 反向传播是一种优化算法,用于调整神经网络中连接权重,以使模型的预测结果更加准确。它通过计算损失函数对权重的梯度,并使用梯度信息来更新权重。
大规模数据和计算能力: 深度学习模型通常需要大量的数据来训练,以及强大的计算资源来进行复杂的计算。随着大数据和GPU等硬件的发展,深度学习在实际应用中取得了显著的进展。
预训练和迁移学习: 预训练模型可以在大规模数据上进行预训练,然后在特定任务上进行微调,从而加速模型训练和提高性能。这种迁移学习的方法在很多领域都取得了良好的效果。

激活函数是神经网络中的一个关键组件,它决定了神经元是否被激活(激活值大于某个阈值)并传递信息给下一层。激活函数引入非线性性质,使得神经网络能够表示更加复杂的函数关系。

1.Sigmoid函数(Logistic函数)

Sigmoid 函数将输入值压缩到 0 和 1 之间,曲线形状平滑,适合用于较浅的网络层或二元分类问题。然而,Sigmoid 函数在输入较大或较小的情况下容易出现梯度消失的问题,限制了其在深层网络中的应用。
在这里插入图片描述

Sigmoid函数的数学表达式为: f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1 其中 x x x 是输入值, e e e 是自然对数的底。这个函数将任意实数映射到一个范围在 0 到 1 之间的值,具有如下特点:

  1. x x x 趋近于正无穷大时, f ( x ) f(x) f(x) 趋近于 1;
  2. x x x 趋近于正无穷小时, f ( x ) f(x) f(x) 趋近于 0;
  3. x = 0 x=0 x=0 处, f ( x ) f(x) f(x) 的值为 0.5,即中间值。

Sigmoid函数也存在一些问题:

  1. 梯度消失: 在输入较大或较小的区域,Sigmoid函数的梯度接近于零,这会导致反向传播时梯度逐渐消失,影响深层网络的训练。
  2. 输出不是零中心: Sigmoid函数的输出在大部分情况下是正的,这可能导致在网络训练过程中的参数更新不均匀。
  3. 计算代价高: 计算Sigmoid函数的指数运算较为昂贵,可能影响网络的计算效率。

2.ReLU函数(Rectified Linear Unit)

ReLU函数在输入大于零时输出输入值本身,否则输出0。它简单且计算高效,在深度学习中广泛使用。但是,ReLU函数在负数区域输出为0,可能导致神经元“死亡”,即不再激活,从而影响网络的训练。
在这里插入图片描述

ReLU函数的数学表达式为: f ( x ) = max ⁡ ( 0 , x ) f(x)=\max(0,x) f(x)=max(0,x)其中, x x x 是输入值, f ( x ) f(x) f(x) 是激活后的输出值。具有如下特点:

  1. x x x 大于等于 0 时, f ( x ) = x f(x) = x f(x)=x,即输出等于输入;
  2. x x x 小于 0 时, f ( x ) = 0 f(x)=0 f(x)=0,即输出为零。

ReLU函数的优势包括:

  1. 非线性: 尽管ReLU在负数区域输出为零,但在正数区域仍然是非线性的,能够引入神经网络的非线性能力,使其能够表示更加复杂的函数关系。
  2. 计算高效: ReLU的计算非常简单,只需要比较输入值和零的大小,相对于其他一些激活函数,计算成本更低。
  3. 避免梯度消失: 在正数区域,ReLU函数的梯度为1,不会出现梯度消失问题,有助于在深层网络中传播梯度。

ReLU函数存在的一些问题:

  1. 死亡神经元问题: 当某个神经元在训练过程中始终输出为负数,其梯度为零,导致它的权重无法更新,即"死亡"。这种情况下,神经元将不再对网络的学习产生影响;
  2. 不是零中心: 当输入为负数时,ReLU的输出为零,这可能导致网络的激活分布不是零中心,可能对训练造成一些影响。

3.Leaky ReLU

Leaky ReLU是 ReLU 的变体,允许负数区域的斜率不为零,从而避免了死亡神经元问题。Leaky ReLU在负数区域保留一些激活,有助于减轻梯度消失问题。

Leaky ReLU函数的数学表达式为: f ( x ) = { x if  x ≥ 0 b x if  x ≤ 0 f(x) = \begin{cases} x &\text{if } x \geq 0 \\ bx &\text{if } x \leq 0 \end{cases} f(x)={xbxif x0if x0其中, x x x 是输入值,b 是一个小于 1 的超参数,通常在训练过程中固定为一个较小的正数,如0.01。具有如下特点:

  1. x x x 大于等于零时, f ( x ) = x f(x)=x f(x)=x,即输出等于输入,与普通的ReLU相同;
  2. x x x 小于零时, f ( x ) = a x f(x)=ax f(x)=ax,即引入一个小的斜率 b 来保证负数区域不完全为零。

Leaky ReLU的优势包括:

  1. 避免死亡神经元问题: 引入了一个小的斜率 aa,使得在负数区域仍然具有非零的输出,从而减轻了死亡神经元问题。
  2. 计算简单: Leaky ReLU的计算非常简单,与ReLU相似,只需要比较输入值和零的大小。

Leaky ReLU 存在的一些问题:

  1. 需要调参: 超参数 b 需要手动设定,虽然通常取较小的值(如0.01)能够在大多数情况下工作,但仍然需要调参。

  2. 不自适应: Leaky ReLU的斜率在负数区域是固定的,而PReLU则能够通过学习自适应地确定斜率

4.PReLU(Parametric ReLU)

PReLU是 Leaky ReLU 的一种扩展形式,它引入了一个可学习的参数,允许网络自动学习在负数区域的斜率,从而更好地适应不同的数据分布。

PReLU函数的数学表达式为: f ( x ) = { x if  x ≥ 0 a x if  x ≤ 0 f(x) = \begin{cases} x &\text{if } x \geq 0 \\ ax &\text{if } x \leq 0 \end{cases} f(x)={xaxif x0if x0其中, x x x 是输入值,a 是一个可学习的参数,通常在训练过程中通过反向传播进行更新。当 a 为 0 时,PReLU退化为普通的ReLU函数。当 a 大于 0 时,PReLU在负数区域引入了一个斜率,使得负数值也能够有非零的输出,从而避免死亡神经元问题。

PReLU函数的优势包括:

  1. 自适应斜率: PReLU通过学习参数 a 来自适应地确定负数区域的斜率,可以根据数据的分布和任务的需求来调整激活函数的形状。
  2. 减轻死亡神经元问题: 通过在负数区域引入斜率,PReLU有助于激活那些在训练过程中可能变得非激活的神经元,从而减轻了死亡神经元问题。
  3. 提高模型表达能力: PReLU的自适应斜率使得神经网络能够学习更加复杂的函数关系,提高了模型的表达能力。

PReLU函数存在的一些问题:

  • 需要更多的参数进行学习,可能会增加模型的复杂度和训练时间。

Leaky ReLU 和 PReLU 都在负数区域引入了斜率,从而在一定程度上改进了ReLU的问题。Leaky ReLU的斜率通常是固定的超参数,而PReLU则通过学习参数来自适应地确定斜率。选择使用哪种激活函数取决于具体问题的需求和实验结果。

5.Tanh函数(双曲正切函数)

Tanh 函数将输入值映射到 -1 和 1 之间,类似于Sigmoid函数,但范围更大。它在某些情况下能够更好地处理输入数据的对称性,但也会存在梯度消失问题。
在这里插入图片描述

Tanh函数的数学表达式为: f ( x ) = e x − e − x e x + e − x f(x)=\frac{e^x - e^{-x}}{e^{x}+e^{-x}} f(x)=ex+exexex其中, x x x 是输入值, e e e 是自然对数的底。Tanh函数将任意实数映射到范围在 -1 到 1 之间的值,具有如下特点:

  1. x x x 趋近于正无穷大时, f ( x ) f(x) f(x) 趋近于 1;
  2. x x x 趋近于正无穷小时, f ( x ) f(x) f(x) 趋近于 -1;
  3. x = 0 x=0 x=0 处, f ( x ) f(x) f(x) 的值为 0。

Tanh 函数的优势包括:

  1. 零中心性: Tanh函数的输出在大部分情况下是零中心的,相对于ReLU等激活函数,更有助于训练稳定性;
  2. 非线性: Tanh函数是非线性的,能够引入神经网络的非线性能力,使其能够表示更加复杂的函数关系。

Tanh函数存在的一些问题:

  • 梯度消失: 在输入较大或较小的区域,Tanh函数的梯度接近于零,可能导致梯度消失问题,特别是在深层网络中。

6. Swish函数

Swish 函数是一种类似于 ReLU 的激活函数,它将输入值与 Sigmoid 函数的乘积作为输出。
Swish函数的数学表达式如下: f ( x ) = x ⋅ σ ( β x ) f(x)=x\cdot \sigma(\beta x) f(x)=xσ(βx)其中, x x x 是输入值, σ σ σ 是Sigmoid函数, β β β 是一个可调参数。Swish函数通过在输入值上引入Sigmoid函数,实现了在正数区域保留线性特性,同时在负数区域引入非线性的特性。

Swish函数的特点包括:

  1. 非线性性质: 在负数区域,Swish 函数的输出呈现非线性特性,有助于引入神经网络的非线性能力,使其能够表示更加复杂的函数关系。
  2. 自动缩放: 当输入为较大的正数时,Swish 函数趋近于线性,不会出现梯度爆炸问题。这有助于模型的稳定性。
  3. 适用范围广: Swish 函数在一些任务中表现出色,尤其在较大的模型中(如深度神经网络)可能表现良好。

Swish函数存在的一些问题:

  1. 计算开销: Swish函数的计算相对于ReLU等简单激活函数更复杂,需要涉及Sigmoid函数的计算。
  2. 不适用于所有情况: 尽管在某些情况下表现出色,Swish函数并不一定在所有任务和网络结构中都能取得最佳性能。

7. ELU(Exponential Linear Unit)

ELU是一种具有平滑非线性特性的激活函数。在正数区域,ELU函数与ReLU相似;而在负数区域,它的曲线更平滑,有助于减轻梯度消失问题。此外,ELU在负数区域的输出不仅不是0,还具有一个负值,有助于缓解神经元死亡问题。
ELU的数学表达式为: f ( x ) = { x if  x ≥ 0 α ( exp ⁡ ( x ) − 1 ) if  x ≤ 0 f(x) = \begin{cases} x &\text{if } x \geq 0 \\ \alpha(\exp (x)-1) &\text{if } x \leq 0 \end{cases} f(x)={xα(exp(x)1)if x0if x0
其中, x x x 是输入值, α α α 是一个可调参数,通常取一个较大的正数,如1。ELU函数通过在负数区域引入指数函数,实现了在负数区域具有非线性的平滑特性。

ELU函数的优势有:

  1. 平滑非线性性质: 在负数区域,ELU函数的输出是平滑的非线性特性,相对于ReLU等函数,能够更好地拟合复杂的函数关系。
  2. 避免死亡神经元问题: ELU在负数区域不会输出零,因此能够避免死亡神经元问题。
  3. 零中心性: ELU函数在大部分情况下是零中心的,有助于训练稳定性。
  4. 自适应斜率: 通过调整参数 α α α 的值,可以自适应地调整负数区域的斜率,使得ELU能够适应不同的数据分布和任务需求。

ELU 存在的一些问题:

  • 计算开销: ELU函数的计算相对于ReLU等简单激活函数较为复杂,涉及指数函数的计算。
  • 参数调整: 参数 α α α 的选择可能需要进行调参,不同的数据和任务可能需要不同的参数值。

8.SELU(Scaled Exponential Linear Unit)

SELU是ELU的扩展,它在一定条件下能够使得网络在前向传播时自我规范化。这意味着在使用SELU激活函数时,网络的每一层的输出的均值和方差能够保持稳定。这一性质有助于训练更深的网络,而无需过多的批标准化等技巧。

SELU函数的数学表达式如下: f ( x ) = λ { x if  x ≥ 0 β ( exp ⁡ ( x ) − 1 ) if  x ≤ 0 f(x) =\lambda \begin{cases} x &\text{if } x \geq 0 \\ \beta (\exp (x)-1) &\text{if } x \leq 0 \end{cases} f(x)=λ{xβ(exp(x)1)if x0if x0其中, x x x 是输入值, β \beta β 是一个超参数(通常设置为1.6733), λ λ λ 是一个超参数(通常设置为1.0507)。SELU函数通过引入尺度参数 λ λ λ,使得输出值在正数区域逐渐缩放,从而实现网络自我规范化。

SELU函数的特点和优势包括:

  1. 自我规范化: 在一定条件下,使用SELU激活函数可以使得每一层的输出的均值和方差保持稳定,从而减轻梯度爆炸和梯度消失问题。
  2. 允许深层网络: 由于自我规范化的特性,SELU函数允许构建更深的神经网络,无需使用复杂的正则化技巧,如批标准化。
  3. 默认初始化: 在一些特定条件下,SELU激活函数使用零均值和单位方差的初始化可以保持自我规范化的特性。

SELU函数 存在的问题:

  • 不适用于所有情况: SELU函数在某些情况下表现出色,但并不一定在所有任务和网络结构中都能取得最佳性能。
  • 需要满足条件: 自我规范化的特性需要满足一定的条件,包括输入数据的分布和权重的初始化方式等。

9.Maxout

Maxout函数是一种通用的激活函数,它不是像ReLU或Sigmoid那样固定的形式,而是一种更为灵活的结构。Maxout函数的主要思想是让每个神经元学习多个线性函数的最大值,从而能够逼近更加复杂的非线性函数。Maxout可以视为ReLU和线性激活函数的泛化,它可以学习各种形状的非线性函数。然而,Maxout的参数量较大,可能需要更多的参数调整。

Maxout函数的数学表达式如下: f ( x ) = max ⁡ ( w 1 T x + b 1 , w 2 T x + b 2 ) f(x) = \max(w_1^Tx+b_1,w_2^Tx+b_2) f(x)=max(w1Tx+b1,w2Tx+b2)其中, x x x 是输入向量, w 1 , w 2 w_1,w_2 w1,w2​ 是权重向量, b 1 , b 2 b_1,b_2 b1,b2 是偏置。。Maxout函数中有两个分支,每个分支都由一个线性变换 w T x + b w^Tx+b wTx+b 组成,然后选择两者中的最大值作为输出。Maxout函数可以扩展到具有更多分支的情况。

Maxout函数的特点和优势包括:

  1. 灵活性: Maxout函数允许每个神经元学习多个线性函数的最大值,因此在逼近各种不同形状的非线性函数时具有灵活性。
  2. 适应性: 每个分支都可以学习数据的不同特征,从而在不同的输入区域自适应地选择最佳的线性函数。
  3. 抗过拟合: Maxout网络通常具有更多的参数,这有助于防止过拟合,尤其是在训练数据有限的情况下。

Maxout 存在的一些问题:

  • 参数量大: Maxout网络的参数量较大,可能需要更多的训练数据和计算资源来训练。
  • 计算成本: Maxout函数的计算成本较高,因为每个神经元有多个分支,每个分支都需要进行线性变换和比较操作。
  • 复杂性: Maxout网络的结构较为复杂,可能需要更多的调参和实验来找到最佳的网络结构。

10.Softmax函数

Softmax函数常用于多分类问题的输出层,将一组原始分数(也称为“logits”)转化为表示各类别概率的概率分布。Softmax函数能够将任意实数值映射到一个范围在0到1之间,并且保证所有类别的概率之和为1。

Softmax函数的数学表达式如下: softmax ( x i ) = e x i ∑ j = 1 N e x j \text{softmax}{(x_i)}=\frac{e^{x_{i}}}{\sum_{j=1}^{N}e^{x_j}} softmax(xi)=j=1Nexjexi其中, x i x_i xi 是原始分数中的第 i i i 个元素, N N N 是类别的数量, e e e 是自然对数的底。Softmax函数将每个原始分数进行指数化,并将指数化后的值除以所有指数化值的和,以获得每个类别的概率。

Softmax函数的特点和应用包括:

  1. 概率分布: Softmax函数的输出是一个概率分布,对于多类别分类问题,每个类别的输出表示为属于该类别的概率。
  2. 归一化: Softmax函数将原始分数进行指数化和归一化,使得网络的输出具有一定的可解释性和意义。
  3. 多类别分类: Softmax函数通常用于多类别分类问题,例如图像识别、文本分类等。

Softmax函数存在的一些问题:

  • 数值稳定性: 当原始分数较大时,指数运算可能导致数值溢出问题。为了提高数值稳定性,通常会在计算Softmax时减去分数中的最大值。
  • 互斥假设: Softmax函数假设每个样本只属于一个类别,不适用于多标签分类问题。
  • 类别数限制: Softmax函数在处理大量类别时可能会引入计算和存储的问题,特别是在输出层的类别数量较大时。

11.GELU

GELU 在正数区域类似于 ReLU,在负数区域则具有平滑的 S 形曲线。GELU 在一些任务上表现出色,并且相对简单,没有额外的超参数。结合了线性和非线性特性,同时在计算效率和性能之间取得了一定的平衡。GELU函数的设计旨在尝试克服ReLU等函数的一些问题,如梯度饱和和死亡神经元问题。

GELU函数的数学表达式如下: GELU ( x ) = 1 2 x ( 1 + tanh ⁡ ( 2 π ( x + 0.044715 x 3 ) ) ) \text{GELU}(x)=\frac{1}{2}x(1+\tanh (\sqrt{\frac{2}{\pi}}(x+0.044715x^{3}))) GELU(x)=21x(1+tanh(π2 (x+0.044715x3)))其中, x x x 是输入值, ⁡ t a n h ⁡tanh tanh 是双曲正切函数。GELU函数的形式结合了线性函数和双曲正切函数,使得在输入的正负两个区域都有非线性的输出。
在这里插入图片描述

GELU函数的特点和优势包括:

  1. 平滑非线性性质: GELU函数在整个输入范围内都有非线性的输出,相对于ReLU等函数,能够更好地拟合复杂的函数关系。
  2. 减轻梯度饱和问题: GELU函数在输入为正数区域具有线性的输出,能够减轻梯度饱和问题,有助于提高训练效率。
  3. 避免死亡神经元问题: GELU函数在负数区域也具有非零输出,能够避免死亡神经元问题。
  4. 计算效率: 相对于一些复杂的激活函数,GELU的计算相对较快,特别是与Sigmoid和双曲正切等函数相比。

GELU函数存在的问题:

  • 可能在某些情况下不如其他激活函数表现出色,具体效果可能会因问题的性质和数据分布而有所不同。

相关文章:

深度学习常用的激活函数

深度学习的核心思想是通过多层次的神经网络结构,逐步抽取和表示数据中的高级特征,从而实现对复杂数据模式的学习和识别。 神经网络结构: 深度学习使用多层次的神经网络,包括输入层、隐藏层和输出层。这些网络结构允许模型自动学习…...

深度学习之用PyTorch实现逻辑回归

0.1 学习视频源于:b站:刘二大人《PyTorch深度学习实践》 0.2 本章内容为自主学习总结内容,若有错误欢迎指正! 代码(类比线性回归): # 调用库 import torch import torch.nn.functional as F#…...

04-4_Qt 5.9 C++开发指南_时间日期与定时器

文章目录 1. 时间日期相关的类2. 源码2.1 可视化UI设计2.2 dialog.h2.3 dialog.cpp 1. 时间日期相关的类 时间日期是经常遇到的数据类型,Qt 中时间日期类型的类如下。 QTime:时间数据类型,仅表示时间,如 15:23:13。 QDate:日期数据类型&…...

7个顶级开源数据集来训练自然语言处理(NLP)和文本模型

推荐:使用 NSDT场景编辑器快速助你搭建可二次编辑的3D应用场景 NLP现在是一个令人兴奋的领域,特别是在像AutoNLP这样的用例中,但很难掌握。开始使用NLP的主要问题是缺乏适当的指导和该领域的过度广度。很容易迷失在各种论文和代码中&#xff…...

计算机网络 网络层 边界网关协议BGP

...

GitHub上受欢迎的Android UI Library

内容 抽屉菜单ListViewWebViewSwitchButton按钮点赞按钮进度条TabLayout图标下拉刷新ViewPager图表(Chart)菜单(Menu)浮动菜单对话框空白页滑动删除手势操作RecyclerViewCardColorDrawableSpinner布局模糊效果TabBarAppBar选择器(Picker)跑马灯日历时间主题样式ImageView通知聊…...

cpm log2((cpm/10) + 1) nmf 1e6 1e5

Gene expression units explained: RPM, RPKM, FPKM, TPM, DESeq, TMM, SCnorm, GeTMM, and ComBat-Seq Read count、CPM、 RPKM、FPKM和TPM的区别 - 简书 (jianshu.com) http://zyxue.github.io/2017/06/02/understanding-TCGA-mRNA-Level3-analysis-results-files-from-fir…...

竞赛项目 深度学习的视频多目标跟踪实现

文章目录 1 前言2 先上成果3 多目标跟踪的两种方法3.1 方法13.2 方法2 4 Tracking By Detecting的跟踪过程4.1 存在的问题4.2 基于轨迹预测的跟踪方式 5 训练代码6 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的视频多目标跟踪实现 …...

如何避免用waveformRecord复制数组

这里描述如何使用数组字段内存管理特定。这使得数组数据能够被移入和移出waveform,aai和aao类型的值字段(BPTR)。 使用这种特定包括用另一个(用户分配的)字段替代存储在BPTR字段的指针。基本规则是: 1、BPTR以及它当前指向的内存,只能在这个…...

RocketMQ 延迟消息

RocketMQ 延迟消息 RocketMQ 消费者启动流程 什么是延迟消息 RocketMQ 延迟消息是指,生产者发送消息给消费者消息,消费者需要等待一段时间后才能消费到。 使用场景 用户下单之后,15分钟未支付,对支付账单进行提醒或者关单处理…...

Dex文件混淆(一):BlackObfuscator

Dex文件混淆(一):BlackObfuscator 首发地址:http://zhuoyue360.com/crack/105.html 文章目录 Dex文件混淆(一):BlackObfuscator1. 前言2.小试牛刀3. 参考学习1. dex2jar源码简析2. BlackObfuscator简析1. 控制流平坦化1. 控制流平坦化基本介绍 2. Dex解析…...

Linux下编译arm 32 出错(/bin/bash: arm-none-linux-gnueabi-gcc: command not found )

一、arm-none-linux-gnueabi-gcc不能再64位系统下下编译ARM的32位库的问题解决方法如下: sudo apt-get install lib32stdc6 sudo apt-get install lib32ncurses5 sudo apt-get install lib32z1 二、交叉编译工具没有写入环境变量或写错,重新写入环境变量…...

最近遇到的两个小问题总结:git问题和node问题

这两个问题都是我帮别人看问题的解决的,在windows系统上遇到的: 1、git没有配置全局变量 在使用git的时候,报’git‘不是内部或外部命令,也不是可运行的程序。然后再在其他文件下面试一下(git --version)…...

Java # Spring(1)

一、概念 1、核心技术:依赖注入(DI),AOP,事件(events),资源,i18n,验证,数据绑定,类型转换,SpEL。 2、测试:模…...

SCL更换阿里数据源

问题: zabbix安装前端环境报错 yum install zabbix-web-mysql-scl zabbix-apache-conf-scl -y 报错:Could not retrieve mirrorlist http://mirrorlist.centos.org/ 能上网 但是不能ping通http://mirrorlist.centos.org/ 解决: 修改repo数…...

【web逆向】全报文加密流量的去加密测试方案

aHR0cHM6Ly90ZGx6LmNjYi5jb20vIy9sb2dpbg 国密混合 WEB JS逆向篇 先看报文:请求和响应都是全加密,这种情况就不像参数加密可以方便全文搜索定位加密代码,但因为前端必须解密响应的密文,因此万能的方法就是搜索拦截器&#xff0c…...

Django实现音乐网站 ⑼

使用Python Django框架制作一个音乐网站, 本篇主要是后台对专辑、首页轮播图原有功能的基础上进行部分功能实现和显示优化。 目录 专辑功能优化 新增编辑 专辑语种改为下拉选项 添加单曲优化显示 新增单曲多选 更新歌手专辑数、专辑单曲数 获取歌手专辑数 保…...

【脚踢数据结构】

(꒪ꇴ꒪ ),Hello我是祐言QAQ我的博客主页:C/C语言,Linux基础,ARM开发板,软件配置等领域博主🌍快上🚘,一起学习,让我们成为一个强大的攻城狮!送给自己和读者的一句鸡汤🤔&…...

uni-app使用vue语法进行开发注意事项

目录 uni-app 项目目录结构 生命周期 路由 路由跳转 页面栈 条件编译 文本渲染 样式渲染 条件渲染 遍历渲染 事件处理 事件修饰符 uni-app 项目目录结构 组件/标签 使用(类似)小程序 语法/结构 使用vue 具体项目目录如下: 生命…...

数据结构---B树

目录标题 B-树的由来B-树的规则和原理B-树的插入分析B-树的插入实现准备工作find函数insert中序遍历 B-树的性能测试B-树的删除B树B树的元素插入B*树的介绍 B-树的由来 在前面的学习过程中,我们见过很多搜索结构比比如说顺序查找,二分查找,搜…...

c++11以后c++标准库定义的固定位宽的整数类型(Fixed width integer types)

Fixed width integer types Fixed width integer types (since C11) - cppreference.com 相关定义文件如下: Windows系统MSVC: Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.33.31629\include\cstdint Linux系统GCC: gcc\libstdc-v3\include\c_g…...

Object.values()

Object.values() 是ES2017新增的一个对象方法,它可以将一个对象自身的所有可枚举属性值,组成一个数组返回。 基本语法: Object.values(obj)示例: jsCopy codeconst obj {foo: bar,baz: 42 };Object.values(obj); // [bar, 42]Object.values()的特点: 只返回可枚举的属性值…...

Oracle 开发篇+Java调用OJDBC访问Oracle数据库

标签:JAVA语言、Oracle数据库、Java访问Oracle数据库释义:OJDBC是Oracle公司提供的Java数据库连接驱动程序 ★ 实验环境 ※ Oracle 19c ※ OJDBC8 ※ JDK 8 ★ Java代码案例 package PAC_001; import java.sql.Connection; import java.sql.ResultSet…...

linux 查询后台任务及杀掉进程

查看后台任务命令 jobs -l删除后台进程命令 kill -9 28719...

【Vue3 博物馆管理系统】使用Vue3、Element-plus菜单组件构建前台用户菜单

系列文章目录 第一章 定制上中下(顶部菜单、底部区域、中间主区域显示)三层结构首页 第二章 使用Vue3、Element-plus菜单组件构建菜单 [第三章 使用Vue3、Element-plus菜单组件构建轮播图] [第四章 使用Vue3、Element-plus菜单组件构建组图文章] 文章目…...

Windows 11清除无效、回收站、过期、缓存、补丁更新文件

Windows 11与之前的Windows版本类似,也需要定期清理无效、垃圾、过期、缓存文件来保持系统性能和存储空间的优化。以下是在Windows 11中进行这些清理操作的一些建议方法: 磁盘清理工具 Windows 11内置了磁盘清理工具,可以帮助你删除临时文件…...

栈和队列详解(2)

目录 一、什么是队列? 二、创建一个我们自己的队列 1.前置准备 1.1需要的三个文件 1.2结构体的创建和头文件的引用 2.接口的实现 2.1初始化队列 2.2入队 2.3队列元素个数和判空 2.4取队头元素和队尾元素 2.5出队 2.6摧毁队列 2.7测试接口 三、所有代码 1.…...

EMC传导干扰滤波电路设计

1.EMC概念 2.EMC 传导干扰详解 EMC传导滤波电路的设计--传导干扰详解 3.EMC 传导干扰的测量方法 4.EMC 滤波电路设计 5.浪涌抑制电路设计 6.开关电源的安全要求 7.当前开关电源灯的应用...

【win10专业版远程控制】 自带远程桌面公司内网电脑

使用win10专业版自带远程桌面公司内网电脑 文章目录 使用win10专业版自带远程桌面公司内网电脑 在现代社会中,各类电子硬件已经遍布我们身边,除了应用在个人娱乐场景的消费类电子产品外,各项工作也离不开电脑的帮助,特别是涉及到数…...

Ubuntu 20.04 中安装docker一键安装脚本

直接上脚本,依次执行如下命令即可 wget http://apollo-pkg-beta.bj.bcebos.com/docker_install.sh bash docker_install.shdocker install docker operation system Ubuntu 18.04 直接上脚本,依次执行如下命令即可 ways1 : wget https://github.com…...