第22次CCF计算机软件能力认证
第一题:灰度直方图
解题思路:
哈希表即可
#include<iostream>
#include<cstring>using namespace std;const int N = 610;
int a[N];
int n , m , l;int main()
{memset(a , 0 , sizeof a);cin >> n >> m >> l;for(int i = 0;i < n;i ++)for(int j = 0;j < m;j ++){int x;cin >> x;a[x] ++;}for(int i = 0;i < l;i ++)cout << a[i] << " ";return 0;
}
第二题:邻域均值
解题思路:
二维前缀和
#include<iostream>
#include<cstring>using namespace std;const int N = 610;
int s[N][N];
int n , l , r , t;int main()
{memset(s , 0 , sizeof s);cin >> n >> l >> r >> t;for(int i = 1;i <= n;i ++)for(int j = 1;j <= n;j ++){int x;cin >> x;s[i][j] = s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1] + x;}int res = 0;for(int i = 1;i <= n;i ++)for(int j = 1;j <= n;j ++){int x1 = max(1 , i - r) , y1 = max(1 , j - r);int x2 = min(n , i + r) , y2 = min(n , j + r);int sum = s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1];int cnt = (x2 - x1 + 1) * (y2 - y1 + 1);if(sum <= t * cnt) res ++;}cout << res << endl;return 0;
}
第三题:DHCP服务器
解题思路:
认真读题,题目描述的非常清楚更具题目进行求解即可,
#include<iostream>
#include<algorithm>using namespace std;const int N = 1e5 + 10;int n , tdef , tmax , tmin;
string h; // 本机名称struct IP
{int st; // 0表示未分配、1表示待分配、2表示占用、3表示过期string owner; // 未分配状态没有占用者int t; // 待分配和占用状态拥有一个大于零的过期时刻
}ip[N];int get_ip_d(string c)
{for(int i = 1;i <= n;i ++)if(ip[i].owner == c) return i;return 0;
}int get_ip(int state)
{/*若没有,则选取最小的状态为未分配的 IP 地址若没有,则选取最小的状态为过期的 IP 地址*/for(int i = 1;i <= n;i ++)if(ip[i].st == state) return i;return 0;
}void update(string send)
{/*若不是,则找到占用者为发送主机的所有 IP 地址,对于其中状态为待分配的,将其状态设置为未分配,并清空其占用者,清零其过期时刻,处理结束*/for(int i = 1;i <= n;i ++)if(ip[i].owner == send) {if(ip[i].st == 1){ip[i].st = 0;ip[i].owner = "";ip[i].t = 0;}}
}void change(int tc)
{/*在到达该过期时刻时,若该地址的状态是待分配,则该地址的状态会自动变为未分配,且占用者清空,过期时刻清零;否则该地址的状态会由占用自动变为过期,且过期时刻清零。*/for(int i = 1;i <= n;i ++)if(ip[i].t && ip[i].t <= tc){if (ip[i].st == 1){ip[i].st = 0;ip[i].owner = "";ip[i].t = 0;}else{ip[i].st = 3;ip[i].t = 0;}}
}int main()
{cin >> n >> tdef >> tmax >> tmin >> h;int q;cin >> q;while(q --){// <发送主机> <接收主机> <报文类型> <IP 地址> <过期时刻>string send , get , type;int x , tc , te;cin >> tc >> send >> get >> type >> x >> te;if(get != h && get != "*") {// 判断接收主机是否为本机,或者为 *,若不是,则判断类型是否为 Request,若不是,则不处理;if(type != "REQ") continue; }// 若类型不是 Discover、Request 之一,则不处理if(type != "REQ" && type != "DIS") continue;// 若接收主机为 *,但类型不是 Discover,或接收主机是本机,但类型是 Discover,则不处理。if(get == "*" && type != "DIS" || get == h && type == "DIS") continue;change(tc);// discover 报文if(type == "DIS"){int k = get_ip_d(send);if(!k) k = get_ip(0);if(!k) k = get_ip(3);if(!k) continue;// 将该 IP 地址状态设置为待分配,占用者设置为发送主机ip[k].st = 1 , ip[k].owner = send;// 若报文中过期时刻为 0 ,则设置过期时刻为 t+tdefif(!te) ip[k].t = tc + tdef;else{int w = te - tc;w = min(w , tmax) , w = max(w , tmin);ip[k].t = w + tc;}cout << h << " " << send << " OFR " << k << " " << ip[k].t << endl;}else{if(get != h) {update(send);continue;}if(!(x <= n && x >= 1 && ip[x].owner == send)){cout << h << " " << send << " NAK " << x << " " << 0 << endl;continue;}// 无论该 IP 地址的状态为何,将该 IP 地址的状态设置为占用ip[x].st = 2;if (!te) ip[x].t = tc + tdef;else{int w = te - tc;w = max(w , tmin), w = min(w, tmax);ip[x].t = tc + w;}cout << h << " " << send << " ACK " << x << " " << ip[x].t << endl;}}return 0;
}
第四题:校门外的树
解题思路:
dp问题
设 f[i] 为用了前 i 个障碍点的所有方案
f[i]=(f[0]∗cnt1+f[1]∗cnt2+…+f[j]∗cnt3+…+f[i−1]∗cnt(i−1))
f[i] 在循环的时候已经计算出结果,计算cnt值为重中之重
cnt值,也就是两个位置之间可以整除的结果个数,也就是约数个数。
#include<iostream>
#include<cstring>
#include<unordered_map>
#include<vector>using namespace std;const int N = 1010 , M = 1e5 + 10 , mod = 1e9 + 7;
int n;
int a[N] , f[N];
unordered_map<int , vector<int>>mp;
bool st[M];int main()
{for(int i = 1;i < M;i ++)for(int j = i * 2;j < M;j += i)mp[j].push_back(i); // 枚举因数cin >> n;for(int i = 0;i < n;i ++) cin >> a[i];f[0] = 1;for(int i = 1;i < n;i ++){memset(st , 0 , sizeof st);for(int j = i - 1;j >= 0;j --){int d = a[i] - a[j] , cnt = 0;for(int k : mp[d])if(!st[k]){cnt ++;st[k] = true;}st[d] = true;f[i] = (f[i] + (long long)f[j] * cnt) % mod;}}cout << f[n - 1] << endl;return 0;
}
第五题:疫苗运输
迪杰斯特拉+扩展欧几里得算法
(不会)
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>#define x first
#define y secondusing namespace std;typedef long long LL;
typedef pair<int, int> PII;const int N = 510;
const LL INF = 0x3f3f3f3f3f3f3f3fll;int n, m;
int len[N];
struct Node
{int cid, sum, pid;
};
vector<Node> ps[N];
vector<PII> line[N]; // x表示节点编号;y表示到下一个点的距离
LL dist[N], ans[N];
int pid[N];
bool st[N];LL exgcd(LL a, LL b, LL &x, LL &y) // 扩展欧几里得算法, 求x, y,使得ax + by = gcd(a, b)
{if (!b){x = 1; y = 0;return a;}LL d = exgcd(b, a % b, y, x);y -= (a / b) * x;return d;
}void dijkstra()
{memset(dist, 0x3f, sizeof dist);for (int i = 0; i < m; i ++ ){int d = 0;for (int j = 0; j < line[i].size(); j ++ ){if (line[i][j].x == 1){dist[i] = d;pid[i] = j;break;}d += line[i][j].y;}}for (int i = 0; i < m; i ++ ){int t = -1;for (int j = 0; j < m; j ++ )if (!st[j] && (t == -1 || dist[j] < dist[t]))t = j;st[t] = true;auto& l = line[t];auto d = dist[t];for (int j = pid[t], k = 0; k < l.size(); j = (j + 1) % l.size(), k ++ ){for (auto& c: ps[l[j].x]){if (st[c.cid]) continue; // 优化很重要LL a = d, b = len[t];LL x = c.sum, y = len[c.cid];LL X, Y;LL D = exgcd(b, y, X, Y);if ((x - a) % D) continue;X = (x - a) / D * X;y /= D;X = (X % y + y) % y;if (dist[c.cid] > a + b * X){dist[c.cid] = a + b * X;pid[c.cid] = c.pid;}}d += l[j].y;}}
}int main()
{scanf("%d%d", &n, &m);for (int i = 0; i < m; i ++ ){int cnt, sum = 0;scanf("%d", &cnt);for (int j = 0; j < cnt; j ++ ){int ver, t;scanf("%d%d", &ver, &t);ps[ver].push_back({i, sum, j});line[i].push_back({ver, t});sum += t;}len[i] = sum;}dijkstra();memset(ans, 0x3f, sizeof ans);for (int i = 0; i < m; i ++ ){if (dist[i] == INF) continue;LL d = dist[i];for (int j = pid[i], k = 0; k < line[i].size(); j = (j + 1) % line[i].size(), k ++ ){int ver = line[i][j].x;ans[ver] = min(ans[ver], d);d += line[i][j].y;}}for (int i = 2; i <= n; i ++ )if (ans[i] == INF) puts("inf");else printf("%lld\n", ans[i]);return 0;
}
相关文章:
第22次CCF计算机软件能力认证
第一题:灰度直方图 解题思路: 哈希表即可 #include<iostream> #include<cstring>using namespace std;const int N 610; int a[N]; int n , m , l;int main() {memset(a , 0 , sizeof a);cin >> n >> m >> l;for(int …...
Go语言基础之基本数据类型
Go语言中有丰富的数据类型,除了基本的整型、浮点型、布尔型、字符串外,还有数组、切片、结构体、函数、map、通道(channel)等。Go 语言的基本类型和其他语言大同小异。 基本数据类型 整型 整型分为以下两个大类: 按…...
Linux Tracing Technologies
目录 1. Linux Tracing Technologies 1. Linux Tracing Technologies Linux Tracing TechnologieseBPFXDPDPDK...
iOS自定义下拉刷新控件
自定义下拉刷新控件 概述 用了很多的别人的下拉刷新控件,想写一个玩玩,自定义一个在使用的时候也会比较有意思。使应用更加的灵动一些,毕竟谁不喜欢各种动画恰到好处的应用呢。 使用方式如下: tableview.refreshControl XRef…...
Springboot写单元测试
导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><exclusions><exclusion><groupId>org.junit.vintage</groupId><artifactId>junit-vintag…...
一篇文章教你使用Docker本地化部署Chatgpt(非api,速度非常快!!!)及裸连GPT的方式(告别镜像GPT)
本地搭建ChatGPT(非api调用) 第一种方法:使用Docker本地化部署第一步,下载安装Docker登录GPT 第二种方法:不部署项目,直接连接 第一种方法:使用Docker本地化部署 这种方法的好处就是没有登录限…...
前馈神经网络dropout实例
直接看代码。 (一)手动实现 import torch import torch.nn as nn import numpy as np import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt#下载MNIST手写数据集 mnist_train torchvision.datasets.MN…...
Android DataStore:安全存储和轻松管理数据
关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、人工智能等,希望大家多多支持。 目录 一、导读二、概览三、使用3.1 Preferences DataStore添加依赖数据读…...
opencv进阶12-EigenFaces 人脸识别
EigenFaces 通常也被称为 特征脸,它使用主成分分析(Principal Component Analysis,PCA) 方法将高维的人脸数据处理为低维数据后(降维),再进行数据分析和处理,获取识别结果。 基本原理…...
The internal rate of return (IRR)
内部收益率 NPV(Net Present Value)_spencer_tseng的博客-CSDN博客...
半导体自动化专用静电消除器主要由哪些部分组成
半导体自动化专用静电消除器是一种用于消除半导体生产过程中的静电问题的设备。由于半导体制造过程中对静电的敏感性,静电可能会对半导体器件的质量和可靠性产生很大的影响,甚至造成元件损坏。因此,半导体生产中采用专用的静电消除器是非常重…...
【C++入门到精通】C++入门 —— deque(STL)
阅读导航 前言一、deque简介1. 概念2. 特点 二、deque使用1. 基本操作(增、删、查、改)2. 底层结构 三、deque的缺陷四、 为什么选择deque作为stack和queue的底层默认容器总结温馨提示 前言 文章绑定了VS平台下std::deque的源码,大家可以下载…...
Codeforces Round 893 (Div. 2) D.Trees and Segments
原题链接:Problem - D - Codeforces 题面: 大概意思就是让你在翻转01串不超过k次的情况下,使得a*(0的最大连续长度)(1的最大连续长度)最大(1<a<n)。输出n个数&…...
SpringBoot + Vue 前后端分离项目 微人事(九)
职位管理后端接口设计 在controller包里面新建system包,再在system包里面新建basic包,再在basic包里面创建PositionController类,在定义PositionController类的接口的时候,一定要与数据库的menu中的url地址到一致,不然…...
【业务功能篇71】Cglib的BeanCopier进行Bean对象拷贝
选择Cglib的BeanCopier进行Bean拷贝的理由是, 其性能要比Spring的BeanUtils,Apache的BeanUtils和PropertyUtils要好很多, 尤其是数据量比较大的情况下。 BeanCopier的主要作用是将数据库层面的Entity转化成service层的POJO。BeanCopier其实已…...
让eslint的错误信息显示在项目界面上
1.需求描述 效果如下 让eslint中的错误,显示在项目界面上 2.问题解决 1.安装 vite-plugin-eslint 插件 npm install vite-plugin-eslint --save-dev2.配置插件 // vite.config.js import { defineConfig } from vite import vue from vitejs/plugin-vue import e…...
手摸手带你实现一个开箱即用的Node邮件推送服务
目录 编辑 前言 准备工作 邮箱配置 代码实现 服务部署 使用效果 题外话 写在最后 相关代码: 前言 由于邮箱账号和手机号的唯一性,通常实现验证码的校验时比较常用的两种方式是手机短信推送和邮箱推送,此外,邮件推送服…...
【Linux网络】网络编程套接字 -- 基于socket实现一个简单UDP网络程序
认识端口号网络字节序处理字节序函数 htonl、htons、ntohl、ntohs socketsocket编程接口sockaddr结构结尾实现UDP程序的socket接口使用解析socket处理 IP 地址的函数初始化sockaddr_inbindrecvfromsendto 实现一个简单的UDP网络程序封装服务器相关代码封装客户端相关代码实验结…...
Python学习笔记第六十四天(Matplotlib 网格线)
Python学习笔记第六十四天 Matplotlib 网格线普通网格线样式网格线 后记 Matplotlib 网格线 我们可以使用 pyplot 中的 grid() 方法来设置图表中的网格线。 grid() 方法语法格式如下: matplotlib.pyplot.grid(bNone, whichmajor, axisboth, )参数说明:…...
机器学习与模式识别3(线性回归与逻辑回归)
一、线性回归与逻辑回归简介 线性回归主要功能是拟合数据,常用平方误差函数。 逻辑回归主要功能是区分数据,找到决策边界,常用交叉熵。 二、线性回归与逻辑回归的实现 1.线性回归 利用回归方程对一个或多个特征值和目标值之间的关系进行建模…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
