当前位置: 首页 > news >正文

计算机竞赛 Yolov安全帽佩戴检测 危险区域进入检测 - 深度学习 opencv

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 Yolov安全帽佩戴检测 危险区域进入检测

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

建筑工人头部伤害是造成建筑伤亡事故的重要原因。佩戴安全帽是防止建筑工人发生脑部外伤事故的有效措施,而在实际工作中工人未佩戴安全帽的不安全行为时有发生。因此,对施工现场建筑工人佩戴安全帽自动实时检测进行探究,将为深入认知和主动预防安全事故提供新的视角。然而,传统的施工现场具有安全管理水平低下、管理范围小、主要依靠安全管理人员的主观监测并且时效性差、不能全程监控等一系列问题。
本项目基于yolov5实现了安全帽和危险区域检测。

2 效果演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 Yolov5框架

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强
:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

  ①==>40×40×255②==>20×20×255③==>10×10×255​    

在这里插入图片描述

  • 相关代码

      class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid
    

4 数据处理和训练

4.1 安全帽检测

这里只是判断 【人没有带安全帽】、【人有带安全帽】、【人体】 3个类别 ,基于 data/coco128.yaml 文件,创建自己的数据集配置文件
custom_data.yaml。
创建自己的数据集配置文件

    # 训练集和验证集的 labels 和 image 文件的位置
​    train: ./score/images/train
​    val: ./score/images/val
​    # number of classesnc: 3# class namesnames: ['person', 'head', 'helmet']

创建每个图片对应的标签文件
使用 data/gen_data/gen_head_helmet.py 来将 VOC 的数据集转换成 YOLOv5 训练需要用到的格式。
使用标注工具类似于 Labelbox 、CVAT 、精灵标注助手 标注之后,需要生成每个图片对应的 .txt 文件,其规范如下:

  • 每一行都是一个目标
  • 类别序号是零索引开始的(从0开始)
  • 每一行的坐标 class x_center y_center width height 格式
  • 框坐标必须采用归一化的 xywh格式(从0到1)。如果您的框以像素为单位,则将x_center和width除以图像宽度,将y_center和height除以图像高度。

代码如下:

import numpy as np
​    def convert(size, box):"""
​        将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
​        :param size: 图片的尺寸: [w,h]
​        :param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
​        :return: 转换后的 [x,y,w,h]
​        """
​    x1 = int(box[0])y1 = int(box[1])x2 = int(box[2])y2 = int(box[3])dw = np.float32(1. / int(size[0]))dh = np.float32(1. / int(size[1]))w = x2 - x1h = y2 - y1x = x1 + (w / 2)y = y1 + (h / 2)x = x * dww = w * dwy = y * dhh = h * dhreturn [x, y, w, h]

生成的 .txt 例子:


​ 1 0.1830000086920336 0.1396396430209279 0.13400000636465847 0.15915916301310062
​ 1 0.5240000248886645 0.29129129834473133 0.0800000037997961 0.16816817224025726
​ 1 0.6060000287834555 0.29579580295830965 0.08400000398978591 0.1771771814674139
​ 1 0.6760000321082771 0.25375375989824533 0.10000000474974513 0.21321321837604046
​ 0 0.39300001866649836 0.2552552614361048 0.17800000845454633 0.2822822891175747
​ 0 0.7200000341981649 0.5570570705458522 0.25200001196935773 0.4294294398277998
​ 0 0.7720000366680324 0.2567567629739642 0.1520000072196126 0.23123123683035374

选择模型
在文件夹 ./models 下选择一个你需要的模型然后复制一份出来,将文件开头的 nc = 修改为数据集的分类数,下面是借鉴
./models/yolov5s.yaml来修改的

# parameters
​    nc: 3  # number of classes     <============ 修改这里为数据集的分类数
​    depth_multiple: 0.33  # model depth multiple
​    width_multiple: 0.50  # layer channel multiple# anchorsanchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 backbonebackbone:# [from, number, module, args][[-1, 1, Focus, [64, 3]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, BottleneckCSP, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 9, BottleneckCSP, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, BottleneckCSP, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 1, SPP, [1024, [5, 9, 13]]],[-1, 3, BottleneckCSP, [1024, False]],  # 9]# YOLOv5 headhead:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, BottleneckCSP, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, BottleneckCSP, [256, False]],  # 17[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, BottleneckCSP, [512, False]],  # 20[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, BottleneckCSP, [1024, False]],  # 23[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

开始训练
这里选择了 yolov5s 模型进行训练,权重也是基于 yolov5s.pt 来训练

    python train.py --img 640 \--batch 16 --epochs 10 --data ./data/custom_data.yaml \--cfg ./models/custom_yolov5.yaml --weights ./weights/yolov5s.pt

4.2 检测危险区域内是否有人

危险区域标注方式

使用的是 精灵标注助手 标注,生成了对应图片的 json 文件

执行侦测

    python area_detect.py --source ./area_dangerous --weights ./weights/helmet_head_person_s.pt

效果
危险区域会使用 红色框 标出来,同时,危险区域里面的人体也会被框出来,危险区域外的人体不会被框选出来。
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

计算机竞赛 Yolov安全帽佩戴检测 危险区域进入检测 - 深度学习 opencv

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; Yolov安全帽佩戴检测 危险区域进入检测 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;4分 该项目较为新颖&am…...

使用python向窗口发送鼠标点击命令

今天遇到一个问题。公司让用电脑在网页上看个视频。网页有个判断&#xff1a;一段时间没有鼠标活动&#xff0c;视频就会暂停。于是就想&#xff0c;能否隔一段时间就模拟鼠标点击一下视频暂停&#xff0c;再点一下继续播放。省得它自己停止播放。这样我就可以让网页窗口在后台…...

C++11并发与多线程笔记(6) unique_lock(类模板)

C11并发与多线程笔记&#xff08;6&#xff09; unique_lock&#xff08;类模板&#xff09; 1、unique_lock取代lock_guard2、unique_lock的第二个参数2.1 std::adopt_lock&#xff1a;2.2 std::try_to_lock&#xff1a;2.3 std::defer_lock&#xff1a; 3、unique_lock的成员…...

计算机网络——OSI与TCP/IP各层的结构与功能,都有哪些协议?

文章目录 一 OSI与TCP/IP各层的结构与功能,都有哪些协议?1.1 应用层1.2 运输层1.3 网络层1.4 数据链路层1.5 物理层1.6 总结一下 二 ⭐TCP 三次握手和四次挥手(面试常客)2.1 TCP 三次握手漫画图解2.2 为什么要三次握手⭐2.3 第2次握手传回了ACK&#xff0c;为什么还要传回SYN&…...

Win7 x86 家庭版SP1 配置 Python 开发环境

1 Win7 下载地址 来源于 MSDN, 我告诉你 - 做一个安静的工具站 ed2k://|file|cn_windows_7_home_basic_with_sp1_x86_dvd_u_676500.iso|2653276160|843E7A78F2126FAC726CF5342710082D|/ 2 Python 版本选择 Python 3.7.9 Python Release Python 3.7.9 | Python.org 3 Pychar…...

从零玩转系列之微信支付实战PC端装修我的订单页面 | 技术创作特训营第一期

一、前言 欢迎来到本期的博客&#xff01;本篇文章是 PC 端的结尾了,前面经历过九个章节到本章节刚刚好十章节感谢观看我的文章,那么接下来我们将要编写的是我的订单页面. GGBOM! 本篇完毕后将是 UniApp 的篇章感受移动端的诱惑 &#x1f497; 本次为前端知识点如果不懂前段可以…...

ChatGPT和Claude的能力全测评

创造性思维/语言 提示&#xff1a;“写一首 4 行诗&#xff0c;每行只有 3 个词&#xff0c;描写重庆” ChatGPT写诗&#x1f447; Claude写诗&#x1f447; 仁者见仁&#xff0c;您怎么看谁更强&#xff1f; 提示&#xff1a; "如果你随机选择这个问题的答案&#xff0c;…...

ffmpeg简介

1.什么是ffmpeg ffmpeg即使一款音视频编解码工具&#xff0c;同时也是一组音视频编解码开发套件&#xff0c;作为编解码开发套件&#xff0c;它为开发者提供了丰富的音视频处理的调用接口。 ffmpeg提供了多种媒体格式的封装和解封装&#xff0c;包括多种音视频编码、多种协议…...

AI绘画 stable diffusion Midjourney 官方GPT文档 AIGC百科全书资料收集

教学AI绘画 AIGC工具 SD教程 ###Redis面试题 单机Redis的qps大概是多少&#xff1f; 项目中用到了哪些Redis的数据类型&#xff1f;为什么这么用&#xff1f; Redis的key到了过期时间就被删除了吗&#xff1f;简述下Redis的过期策略&#xff1f; Redis有哪几种内存淘汰策略…...

Lombok注解大全

一、安装插件&#xff0c;eclipse 对于 lombok 的支持 二、引入依赖 <dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.20</version> <!-- Spring Boot 项目此部分可以不写 --&g…...

STM32--ADC模数转换

文章目录 ADC简介逐次逼近型ADCADC框图转换模式数据对齐转换时间校准ADC基本结构ADC单通道工程代码&#xff1a; ADC简介 STM32的ADC&#xff08;Analog-Digital Converter&#xff09;模拟-数字转换器&#xff0c;是一种逐次逼近型模拟数字转换器&#xff0c;可以将引脚上连续…...

陕西科技大学改考408!附考情分析

改考信息 8月14日&#xff0c;陕西科技大学公布了2024年硕士研究生招生目录&#xff08;初稿&#xff09;&#xff0c;其中不难发现083500软件工程初试专业课由819数据结构改为408计算机学科专业基础 图片&#xff1a;陕西科技大学24专业目录-软件工程学硕 https://yjszs.sus…...

02.有监督算法——朴素贝叶斯

1.朴素贝叶斯 1.1条件概率 如果两个事件A和B不是相互独立&#xff0c;并且知道事件B已经发生&#xff0c;A在B中的条件概率&#xff1a; P ( A ∣ B ) P ( A B ) P ( B ) P(A|B) {P(AB) \over P(B)} P(A∣B)P(B)P(AB)​ 先验概率&#xff1a; 根据以往经验和分析得到的概…...

前端新手学习路线

文章目录 前端学习路线&#xff01;特点符号表大纲前言 - 学编程需要的特质一、前端入门⭐️ 开发工具浏览器编辑器文档笔记 ⭐️ HTML⭐️ CSS⭐️ JavaScript✅ ES6 特性 二、巩固基础前端基础知识计算机基础✅ 算法和数据结构✅ 计算机网络✅ 操作系统 软件开发基础✅ 设计模…...

vactor中迭代器失效问题

目录 什么是迭代器失效导致迭代器失效的操作VS和g环境下对与迭代器失效的态度 什么是迭代器失效 迭代器的底层其实就是一个指针&#xff0c;或者对指针进行了封装 vector的迭代器就是一个指针T* 一个迭代器指向某一个空间&#xff0c;此时这块空间被释放了&#xff0c;这个迭…...

电子商务防火墙的作用

1.作为网络安全的屏障 只有经过精心选择的应用协议才能通过防火墙&#xff0c;可使网络环境变得更安全。如 防火墙可以禁止 NFS 协议进出受保护的网络&#xff0c;这样外部的攻击者就不可能利用这些 脆弱的协议来攻击内部网络。防火墙同时可以保护网络免受基于路由的攻击&am…...

「UG/NX」Block UI 选择特征SelectFeature

✨博客主页何曾参静谧的博客📌文章专栏「UG/NX」BlockUI集合📚全部专栏「UG/NX」NX二次开发「UG/NX」BlockUI集合「VS」Visual Studio「QT」QT5程序设计「C/C+&#...

【数据分享】2006-2021年我国城市级别的节约用水相关指标(免费获取\20多项指标)

《中国城市建设统计年鉴》中细致地统计了我国城市市政公用设施建设与发展情况&#xff0c;在之前的文章中&#xff0c;我们分享过基于2006-2021年《中国城市建设统计年鉴》整理的2006—2021年我国城市级别的市政设施水平相关指标、2006-2021年我国城市级别的各类建设用地面积数…...

Azure不可变Blob存储

文章目录 Azure不可变Blob存储介绍Azure不可变性策略实战演练 Azure不可变Blob存储介绍 不可变的存储是一种用于存储业务关键型 Blob 数据的存储方式。与可变存储相反&#xff0c;不可变存储的特点是一旦数据被写入后&#xff0c;便无法再对其进行修改或删除。这种存储方式提供…...

No mapping found for HTTP request with URI

参考: 参考地址 说明 ssm老项目,接过来别人的项目 临时建了一个Controller方便测试用的,结果访问掉不通,报: No mapping found for HTTP request with URIxxxx 这样的错误 解决办法 看了下web,xml配置 在 webmvc-config.xml 配置文件里面添加了几行配置 说明: com.iph.h…...

视频转云存的痛点

现在整个运营商体系里面&#xff0c;有大量的视频转云存储的需求&#xff0c;但是视频云存储有一个比较大的痛点&#xff0c;就是成本&#xff01; 成本一&#xff1a;存储成本&#xff1b; 我们以1000路2M视频转云存&#xff0c;存储时间为90天为例&#xff08;B端存储时间有…...

3D医学教学虚拟仿真系统:身临其境感受人体结构和功能

3D医学教学虚拟仿真系统是一种基于虚拟现实技术的教学工具&#xff0c;它可以帮助学生更好地理解和掌握医学知识。这种课件通常包括人体解剖学、生理学、病理学等方面的教学内容&#xff0c;通过三维立体的图像和动画展示&#xff0c;让学生更加直观地了解人体结构和功能。 与传…...

【.net】本地调试运行只能用localhost的问题

【.net】本地调试运行只能用localhost的问题 解决方案 找到到项目目录下 隐藏文件夹 .vs /项目名称/config/applicationhost.config <bindings><binding protocol"http" bindingInformation"*:1738:localhost" /></bindings> 再加一条你…...

营销数字化|企业级 AIGC 工具的「iPhone 时刻」

2007 年&#xff0c;乔布斯发布了第一款 iPhone&#xff0c;从此彻底改变了手机行业的市场走向。iPhone 成功的背后&#xff0c;一个很重要的原因是&#xff1a;它让用户以更简单、更符合直觉的方式来使用手机。 如今&#xff0c;AIGC 工具也在等待它的「iPhone 时刻」&#xf…...

Zookeeper集群单节点启动成功但未同步其他节点数据

首先排查节点启动是否正常&#xff1a; 在zookeeper的bin目录下执行&#xff1a;sh zkServer.sh status 判断当前节点数据leader 还是follower 节点都启动正常&#xff0c;但某一个zookeeper集群节点&#xff08;下面简称“异常节点”&#xff09;不同步其他节点数据&#xf…...

回归预测 | MATLAB实现TSO-LSSVM金枪鱼群算法优化最小二乘支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现TSO-LSSVM金枪鱼群算法优化最小二乘支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现TSO-LSSVM金枪鱼群算法优化最小二乘支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&a…...

第5步---MySQL的DQL查询语句

第5步---MySQL的DQL查询语句 DQL 数据库查询语言 1.基本的查询语句 1.完整得查询得语句 简化版的查询语句 select * from 表名 where 条件; 2.创建用于测试的表 1.创建测试数据 -- DQL -- 创建测试表 DROP TABLE IF EXISTS product; CREATE TABLE IF NOT EXISTS product( pi…...

ChatGpt开源项目完美运行配置-ChatGml2

&#xff08;以下所有软件均可免费在网盘获取。&#xff09; 任务描述 本节任务是安装和配置chatgpt项目所需的软件以及chatgpt项目所需要的python库包&#xff0c;同时编写python代码来完成chatgpt项目的人机对话功能。 实验工具 显卡GTX1070&#xff08;专用内存需要大于等…...

微服务-GateWay(网关)

所谓网关是什么意思&#xff1f; 相当于就是你们小区家的保安&#xff0c;进出小区都得获得保安的同意&#xff0c;守护你们小区的生命财产健康&#xff0c;网关也是如此&#xff0c;对每个请求都严格把关&#xff0c;将合法的或者是获得权限的请求进入服务器 网关的功能&…...

基于X86六轮差速移动机器人运动控制器设计与实现(一)软件与硬件架构

本文研究的六轮差速移动机器人 (Six-Wheeled Differential Mobile Robot &#xff0c; SWDMR) 为了满足资源站到资源站点对点的物资运输&#xff0c;对机器人的跨越障碍能力 有较高的要求。对比传统的四轮移动机器人&#xff0c;六轮移动机器人能够提供更强的驱动 力&#…...

福建建设工程环保备案网站入口/网站模板价格

到了小Q丧心病狂的卫生间思考时间&#xff1a; 题目&#xff1a;小Q今天在上厕所时想到了这个问题&#xff1a;有n个数&#xff0c;两两组成二元组&#xff0c;相差最小的有多少对呢&#xff1f;相差最大呢&#xff1f; 输入描述: 输入包含多组测试数据。 对于每组测试数据&…...

wordpress 用户id/广告公司职位

严格相等 ("triple equals" 或 "identity")&#xff0c;使用 类型转换规则 * 如果Type(x)和Type(y)不同&#xff0c;返回false * 如果Type(x)和Type(y)相同* 如果Type(x)是Number类型* 如果x是NaN&#xff0c;返回false* 如果y是NaN&#xff0c;返回false…...

做迅雷下载电影类网站会侵权么/html网页设计模板

2. 这次爬取的网址请搜索“阿凡题”(纯技术讨论)“阿凡题”(纯技术讨论)3. 在该网址选择查院校&#xff0c;其他都是默认4. 这次爬取的信息主要是下图红框的内容&#xff0c;在浏览器开发者中&#xff0c;点击XHR就可以发现这个接口&#xff0c;接口的内容都有我们需要的信息。…...

个人网站 虚拟主机价格/宁波微信推广平台哪个好

nonlocal关键字用来在函数或其他作用域中使用外层(非全局)变量。 nonlocal用于声明&#xff0c;修改嵌套作用域&#xff08;enclosing 作用域&#xff0c;外层非全局作用域&#xff09;中的变量&#xff0c;如下实例&#xff1a; #!/usr/bin/python3def outer(): num 10 def i…...

成都网站制作的公司/网店代运营和推广销售

在上篇文章我们配置完SCVMM主机&#xff0c;接下来我们使用SCVMM来在Hyper-v中创建windows7虚拟机&#xff0c;以及安装windiws7系统&#xff1b;在新建虚拟机之前我们先来安装库服务器&#xff0c;来简化我们新建虚拟机。 一、首选我们使用具有SCVMM管理员登录到SCVMM服务器&a…...

网站做三方登陆需要注册公司不/专业郑州企业网站建设

素数筛法C代码 这种素数筛法时间复杂度大约为O(n*sqrt(n)),略差于最优线性筛法的O(n)&#xff0c;但是面对一般的OJ题目足够用了&#xff0c;而且简单易记。 使用素数筛法&#xff0c;输出0~Max之间的所有素数 #include <iostream>using namespace std;#define Max 10…...