当前位置: 首页 > news >正文

Redis缓存读写策略(三种)数据结构(5+3)

Redis缓存读写策略(三种)

Cache Aside Pattern(旁路缓存模式)

Cache Aside Pattern 是我们平时使用比较多的一个缓存读写模式,比较适合读请求比较多的场景。

  • 先更新 db
  • 然后直接删除 cache 。

 :

  • 从 cache 中读取数据,读取到就直接返回
  • cache 中读取不到的话,就从 db 中读取数据返回
  • 再把数据放到 cache 中。

在写数据的过程中,可以先删除 cache ,后更新 db 么?

答案: 那肯定是不行的!因为这样可能会造成 数据库(db)和缓存(Cache)数据不一致的问题。

举例:请求 1 先写数据 A,请求 2 随后读数据 A 的话,就很有可能产生数据不一致性的问题。

当你这样回答之后,面试官可能会紧接着就追问:“在写数据的过程中,先更新 db,后删除 cache 就没有问题了么?

答案: 理论上来说还是可能会出现数据不一致性的问题,不过概率非常小,因为缓存的写入速度是比数据库的写入速度快很多。

举例:请求 1 先读数据 A,请求 2 随后写数据 A,并且数据 A 在请求 1 请求之前不在缓存中的话,也有可能产生数据不一致性的问题。

Cache Aside Pattern 的缺陷

缺陷 1:首次请求数据一定不在 cache 的问题

解决办法:可以将热点数据可以提前放入 cache 中。

缺陷 2:写操作比较频繁的话导致 cache 中的数据会被频繁被删除,这样会影响缓存命中率 。

Read/Write Through Pattern(读写穿透)

写(Write Through):

  • 先查 cache,cache 中不存在,直接更新 db。
  • cache 中存在,则先更新 cache,然后 cache 服务自己更新 db(同步更新 cache 和 db)。

读(Read Through):

  • 从 cache 中读取数据,读取到就直接返回 。
  • 读取不到的话,先从 db 加载,写入到 cache 后返回响应。

Write Behind Pattern(异步缓存写入) 

Write Behind Pattern 和 Read/Write Through Pattern 很相似,两者都是由 cache 服务来负责 cache 和 db 的读写。

但是,两个又有很大的不同:Read/Write Through 是同步更新 cache 和 db,而 Write Behind 则是只更新缓存,不直接更新 db,而是改为异步批量的方式来更新 db。

很明显,这种方式对数据一致性带来了更大的挑战,比如 cache 数据可能还没异步更新 db 的话,cache 服务可能就就挂掉了。

这种策略在我们平时开发过程中也非常非常少见,但是不代表它的应用场景少,比如消息队列中消息的异步写入磁盘、MySQL 的 Innodb Buffer Pool 机制都用到了这种策略。

Write Behind Pattern 下 db 的写性能非常高,非常适合一些数据经常变化又对数据一致性要求没那么高的场景,比如浏览量、点赞量。

Redis数据结构(5+3)

5种基本数据结构

String

String 是 Redis 中最简单同时也是最常用的一个数据结构。String 是一种二进制安全的数据结构,可以用来存储任何类型的数据比如字符串、整数、浮点数、图片(图片的 base64 编码或者解码或者图片的路径)、序列化后的对象。

应用场景

需要存储常规数据的场景

  • 举例:缓存 session、token、图片地址、序列化后的对象(相比较于 Hash 存储更节省内存)。
  • 相关命令:SETGET

需要计数的场景

  • 举例:用户单位时间的请求数(简单限流可以用到)、页面单位时间的访问数。
  • 相关命令:SETGETINCRDECR

分布式锁

利用 SETNX key value 命令可以实现一个最简易的分布式锁(存在一些缺陷,通常不建议这样实现分布式锁)。

List(列表)

Redis 的 List 的实现为一个 双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。

应用场景

信息流展示

  • 举例:最新文章、最新动态。
  • 相关命令:LPUSHLRANGE

消息队列

Redis List 数据结构可以用来做消息队列,只是功能过于简单且存在很多缺陷,不建议这样做。

相对来说,Redis 5.0 新增加的一个数据结构 Stream 更适合做消息队列一些,只是功能依然非常简陋。和专业的消息队列相比,还是有很多欠缺的地方比如消息丢失和堆积问题不好解决。

Hash(哈希)

应用场景

对象数据存储场景

  • 举例:用户信息、商品信息、文章信息、购物车信息。
  • 相关命令:HSET (设置单个字段的值)、HMSET(设置多个字段的值)、HGET(获取单个字段的值)、HMGET(获取多个字段的值)。

Set(集合)

Redis 中的 Set 类型是一种无序集合,集合中的元素没有先后顺序但都唯一,有点类似于 Java 中的 HashSet 

应用场景

需要存放的数据不能重复的场景

  • 举例:网站 UV 统计(数据量巨大的场景还是 HyperLogLog更适合一些)、文章点赞、动态点赞等场景。
  • 相关命令:SCARD(获取集合数量) 。
  • 举例:共同好友(交集)、共同粉丝(交集)、共同关注(交集)、好友推荐(差集)、音乐推荐(差集)、订阅号推荐(差集+交集) 等场景。
  • 相关命令:SINTER(交集)、SINTERSTORE (交集)、SUNION (并集)、SUNIONSTORE(并集)、SDIFF(差集)、SDIFFSTORE (差集)。
  • 需要随机获取数据源中的元素的场景

  • 举例:抽奖系统、随机点名等场景。
  • 相关命令:SPOP(随机获取集合中的元素并移除,适合不允许重复中奖的场景)、SRANDMEMBER(随机获取集合中的元素,适合允许重复中奖的场景)。

Sorted Set(有序集合)

Sorted Set 类似于 Set,但和 Set 相比,Sorted Set 增加了一个权重参数 score,使得集合中的元素能够按 score 进行有序排列,还可以通过 score 的范围来获取元素的列表。有点像是 Java 中 HashMapTreeSet 的结合体。

应用场景

需要随机获取数据源中的元素根据某个权重进行排序的场景

  • 举例:各种排行榜比如直播间送礼物的排行榜、朋友圈的微信步数排行榜、王者荣耀中的段位排行榜、话题热度排行榜等等。
  • 相关命令:ZRANGE (从小到大排序)、 ZREVRANGE (从大到小排序)、ZREVRANK (指定元素排名)。

3种特殊数据结构

 

相关文章:

Redis缓存读写策略(三种)数据结构(5+3)

Redis缓存读写策略(三种) Cache Aside Pattern(旁路缓存模式) Cache Aside Pattern 是我们平时使用比较多的一个缓存读写模式,比较适合读请求比较多的场景。 写: 先更新 db然后直接删除 cache 。 读 : …...

计算机竞赛 Yolov安全帽佩戴检测 危险区域进入检测 - 深度学习 opencv

1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 Yolov安全帽佩戴检测 危险区域进入检测 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分创新点:4分 该项目较为新颖&am…...

使用python向窗口发送鼠标点击命令

今天遇到一个问题。公司让用电脑在网页上看个视频。网页有个判断:一段时间没有鼠标活动,视频就会暂停。于是就想,能否隔一段时间就模拟鼠标点击一下视频暂停,再点一下继续播放。省得它自己停止播放。这样我就可以让网页窗口在后台…...

C++11并发与多线程笔记(6) unique_lock(类模板)

C11并发与多线程笔记(6) unique_lock(类模板) 1、unique_lock取代lock_guard2、unique_lock的第二个参数2.1 std::adopt_lock:2.2 std::try_to_lock:2.3 std::defer_lock: 3、unique_lock的成员…...

计算机网络——OSI与TCP/IP各层的结构与功能,都有哪些协议?

文章目录 一 OSI与TCP/IP各层的结构与功能,都有哪些协议?1.1 应用层1.2 运输层1.3 网络层1.4 数据链路层1.5 物理层1.6 总结一下 二 ⭐TCP 三次握手和四次挥手(面试常客)2.1 TCP 三次握手漫画图解2.2 为什么要三次握手⭐2.3 第2次握手传回了ACK,为什么还要传回SYN&…...

Win7 x86 家庭版SP1 配置 Python 开发环境

1 Win7 下载地址 来源于 MSDN, 我告诉你 - 做一个安静的工具站 ed2k://|file|cn_windows_7_home_basic_with_sp1_x86_dvd_u_676500.iso|2653276160|843E7A78F2126FAC726CF5342710082D|/ 2 Python 版本选择 Python 3.7.9 Python Release Python 3.7.9 | Python.org 3 Pychar…...

从零玩转系列之微信支付实战PC端装修我的订单页面 | 技术创作特训营第一期

一、前言 欢迎来到本期的博客!本篇文章是 PC 端的结尾了,前面经历过九个章节到本章节刚刚好十章节感谢观看我的文章,那么接下来我们将要编写的是我的订单页面. GGBOM! 本篇完毕后将是 UniApp 的篇章感受移动端的诱惑 💗 本次为前端知识点如果不懂前段可以…...

ChatGPT和Claude的能力全测评

创造性思维/语言 提示:“写一首 4 行诗,每行只有 3 个词,描写重庆” ChatGPT写诗👇 Claude写诗👇 仁者见仁,您怎么看谁更强? 提示: "如果你随机选择这个问题的答案,…...

ffmpeg简介

1.什么是ffmpeg ffmpeg即使一款音视频编解码工具,同时也是一组音视频编解码开发套件,作为编解码开发套件,它为开发者提供了丰富的音视频处理的调用接口。 ffmpeg提供了多种媒体格式的封装和解封装,包括多种音视频编码、多种协议…...

AI绘画 stable diffusion Midjourney 官方GPT文档 AIGC百科全书资料收集

教学AI绘画 AIGC工具 SD教程 ###Redis面试题 单机Redis的qps大概是多少? 项目中用到了哪些Redis的数据类型?为什么这么用? Redis的key到了过期时间就被删除了吗?简述下Redis的过期策略? Redis有哪几种内存淘汰策略…...

Lombok注解大全

一、安装插件&#xff0c;eclipse 对于 lombok 的支持 二、引入依赖 <dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.20</version> <!-- Spring Boot 项目此部分可以不写 --&g…...

STM32--ADC模数转换

文章目录 ADC简介逐次逼近型ADCADC框图转换模式数据对齐转换时间校准ADC基本结构ADC单通道工程代码&#xff1a; ADC简介 STM32的ADC&#xff08;Analog-Digital Converter&#xff09;模拟-数字转换器&#xff0c;是一种逐次逼近型模拟数字转换器&#xff0c;可以将引脚上连续…...

陕西科技大学改考408!附考情分析

改考信息 8月14日&#xff0c;陕西科技大学公布了2024年硕士研究生招生目录&#xff08;初稿&#xff09;&#xff0c;其中不难发现083500软件工程初试专业课由819数据结构改为408计算机学科专业基础 图片&#xff1a;陕西科技大学24专业目录-软件工程学硕 https://yjszs.sus…...

02.有监督算法——朴素贝叶斯

1.朴素贝叶斯 1.1条件概率 如果两个事件A和B不是相互独立&#xff0c;并且知道事件B已经发生&#xff0c;A在B中的条件概率&#xff1a; P ( A ∣ B ) P ( A B ) P ( B ) P(A|B) {P(AB) \over P(B)} P(A∣B)P(B)P(AB)​ 先验概率&#xff1a; 根据以往经验和分析得到的概…...

前端新手学习路线

文章目录 前端学习路线&#xff01;特点符号表大纲前言 - 学编程需要的特质一、前端入门⭐️ 开发工具浏览器编辑器文档笔记 ⭐️ HTML⭐️ CSS⭐️ JavaScript✅ ES6 特性 二、巩固基础前端基础知识计算机基础✅ 算法和数据结构✅ 计算机网络✅ 操作系统 软件开发基础✅ 设计模…...

vactor中迭代器失效问题

目录 什么是迭代器失效导致迭代器失效的操作VS和g环境下对与迭代器失效的态度 什么是迭代器失效 迭代器的底层其实就是一个指针&#xff0c;或者对指针进行了封装 vector的迭代器就是一个指针T* 一个迭代器指向某一个空间&#xff0c;此时这块空间被释放了&#xff0c;这个迭…...

电子商务防火墙的作用

1.作为网络安全的屏障 只有经过精心选择的应用协议才能通过防火墙&#xff0c;可使网络环境变得更安全。如 防火墙可以禁止 NFS 协议进出受保护的网络&#xff0c;这样外部的攻击者就不可能利用这些 脆弱的协议来攻击内部网络。防火墙同时可以保护网络免受基于路由的攻击&am…...

「UG/NX」Block UI 选择特征SelectFeature

✨博客主页何曾参静谧的博客📌文章专栏「UG/NX」BlockUI集合📚全部专栏「UG/NX」NX二次开发「UG/NX」BlockUI集合「VS」Visual Studio「QT」QT5程序设计「C/C+&#...

【数据分享】2006-2021年我国城市级别的节约用水相关指标(免费获取\20多项指标)

《中国城市建设统计年鉴》中细致地统计了我国城市市政公用设施建设与发展情况&#xff0c;在之前的文章中&#xff0c;我们分享过基于2006-2021年《中国城市建设统计年鉴》整理的2006—2021年我国城市级别的市政设施水平相关指标、2006-2021年我国城市级别的各类建设用地面积数…...

Azure不可变Blob存储

文章目录 Azure不可变Blob存储介绍Azure不可变性策略实战演练 Azure不可变Blob存储介绍 不可变的存储是一种用于存储业务关键型 Blob 数据的存储方式。与可变存储相反&#xff0c;不可变存储的特点是一旦数据被写入后&#xff0c;便无法再对其进行修改或删除。这种存储方式提供…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...