当前位置: 首页 > news >正文

Python代理池健壮性测试 - 压力测试和异常处理

大家好!在构建一个可靠的Python代理池时,除了实现基本功能外,我们还需要进行一系列健壮性测试来确保其能够稳定运行,并具备应对各种异常情况的能力。本文将介绍如何使用压力测试工具以及合适的异常处理机制来提升Python代理池的可用性,并为您提供高质量、专业度强的代码示例。

压力测试:

1.安装并配置Locust:

```python

pip install locust

```

2.创建Locust测试脚本:

```python

from locust import HttpUser,task,between

class ProxyPoolUser(HttpUser):

wait_time=between(5,10)

task

def test_proxy(self):

self.client.get(“/get_random_proxy”)

```

3.启动Locust进行压测:

```bash

locusst-f proxy_pool_test.py–host=http://localhost:5000

#在上述命令中,“proxy_pool_test.py”是你创建的Locu st测试脚文文件,“http://localhost:50 00”是监控界面URL地址。

```

4.分析结果与优化改进:

-观察请求响应时间是否过长或者有较多失败请求;

-根据观察结果进行优化改进,如增加并发数、调整等待时间或者引入负载均衡机制。

异常处理:

在构建一个健壮的Python代理池时,我们需要考虑各种可能出现的异常情况,并合适地处理它们。以下是一些常见问题及相应解决方案:

1.连接超时:

```python

import requests

try:

response=requests.get(url,timeout=5)

except requests.exceptions.Timeout as e:

print(“请求超时”)

```

2.请求失败与重试:

```python

import random

max_retry_times=3#最大重试次数

def send_request(url):

retry_count=0

while retry_count<max_retry_times:

try:

response=requests.get(url)

if resposne.status_code==200:

return True

except Exception as e:

print(f"Request failed with error:{str(e)}")

#等待随机时间后再次尝试

time.sleep(random.randint(1,10))

continue

else:

print(‘达到最大重连限制’)

return False

```

本文介绍了Python代理池健壮性测试中压力测试和异常处理两个关键环节,并提供相关代码示例。通过使用Locust工具对代理池进行压测以及合适地捕获和处理不同类型的异常,我们可以提升其流畅性和稳定性。希望这些知识能够帮助您构建一个高效、可靠的Python代理池,并在实际应用中发挥出最佳表现!

如果有任何问题或疑问,欢迎随时在评论区咨询讨论。祝愿你成功打造一款优秀的Python代理池!在这里插入图片描述

相关文章:

Python代理池健壮性测试 - 压力测试和异常处理

大家好&#xff01;在构建一个可靠的Python代理池时&#xff0c;除了实现基本功能外&#xff0c;我们还需要进行一系列健壮性测试来确保其能够稳定运行&#xff0c;并具备应对各种异常情况的能力。本文将介绍如何使用压力测试工具以及合适的异常处理机制来提升Python代理池的可…...

回文子串-中心拓展

给你一个字符串 s &#xff0c;请你统计并返回这个字符串中 回文子串 的数目。 回文字符串 是正着读和倒过来读一样的字符串。 子字符串 是字符串中的由连续字符组成的一个序列。 具有不同开始位置或结束位置的子串&#xff0c;即使是由相同的字符组成&#xff0c;也会被视作不…...

2023.8各大浏览器11家对比:Edge/Chrome/Opera/Firefox/Tor/Vivaldi/Brave,安全性,速度,体积,内存占用

测试环境&#xff1a;全默认设置的情况下&#xff0c;均在全新的系统上进行测试&#xff0c;系统并未进行任何改动&#xff0c;没有杀毒软件&#xff0c;浏览器进程全部在后台&#xff0c;且为小窗模式&#xff0c;小窗分辨率均为浏览器厂商默认缩放大小(变量不唯一)&#xff0…...

python中的matplotlib画散点图(数据分析与可视化)

python中的matplotlib画散点图&#xff08;数据分析与可视化&#xff09; import numpy as np import pandas as pd import matplotlib.pyplot as pltpd.set_option("max_columns",None) plt.rcParams[font.sans-serif][SimHei] plt.rcParams[axes.unicode_minus]Fa…...

2023前端面试笔记 —— HTML5

系列文章目录 内容链接2023前端面试笔记HTML5 文章目录 系列文章目录前言一、HTML 文件中的 DOCTYPE 是什么作用二、HTML、XML、XHTML 之间有什么区别三、前缀为 data- 开头的元素属性是什么四、谈谈你对 HTML 语义化的理解五、HTML5 对比 HTML4 有哪些不同之处六、meta 标签有…...

【LeetCode】面试题总结 消失的数字 最小k个数

1.消失的数字 两种思路 1.先升序排序&#xff0c;再遍历并且让后一项与前一项比较 2.转化为数学问题求等差数列前n项和 &#xff08;n的大小为数组的长度&#xff09;&#xff0c;将根据公式求得的应有的和数与数组中实际的和作差 import java.util.*; class Solution {public …...

导入功能importExcel (现成直接用)

1. 实体类字段上加 Excel(name "xxx"), 表示要导入的字段 Excel(name "用户名称")private String nickName; 2. controller (post请求) /*** 导入用户数据** param file 文件* param updateSupport 是否更新支持&#xff0c;如果已存在&#xff0c;则进…...

cvc-complex-type.2.4.a: 发现了以元素 ‘base-extension‘ 开头的无效内容。应以 ‘{layoutlib}‘ 之一开头

不能飞的猪只是没用的猪。 —— 宫崎骏 《红猪》 常见的1种case 记录一下&#xff0c;新电脑安装android studio导入公司那些gradle还是5.5左右的工程以后&#xff0c;各种不适应。编译问题出现了。老电脑都是好好的。 cvc-complex-type.2.4.a: 发现了以元素 ‘base-extensi…...

cortex-A7核IIC实验

iic.h&#xff1a; #ifndef __IIC_H__ #define __IIC_H__ #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_rcc.h"/* 通过程序模拟实现I2C总线的时序和协议* GPIOF ---> AHB4* I2C1_SCL ---> PF14* I2C1_SDA ---> PF15** */#define SET_SDA_…...

task.run()和 await task.run() 区别 await 运行机制

Task.Run() 和 await Task.Run() 都涉及异步编程&#xff0c;但它们在使用场景和效果上有一些区别。1. **Task.Run()&#xff1a;**- Task.Run() 是一个用于在后台线程上执行代码块的方法。它将指定的代码块包装在一个新的Task中&#xff0c;并在后台线程上运行。它不会阻塞调用…...

LeetCode面试经典150题(day 2)

26. 删除有序数组中的重复项 难度:简单 给你一个 升序排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯…...

阿里云机器学习PAI全新推出特征平台 (Feature Store),助力AI建模场景特征数据高效利用

推荐算法与系统在全球范围内已得到广泛应用&#xff0c;为用户提供了更个性化和智能化的产品推荐体验。在推荐系统领域&#xff0c;AI建模中特征数据的复用、一致性等问题严重影响了建模效率。阿里云机器学习平台 PAI 推出特征平台&#xff08;PAI-FeatureStore&#xff09; 。…...

网络安全工具和资源推荐: 介绍网络安全领域中常用的工具、框架、资源和学习资料

章节1: 前言 随着数字化时代的不断深入&#xff0c;网络安全的重要性愈发凸显。在这个信息爆炸的时代&#xff0c;我们必须保护个人隐私、敏感数据以及网络基础设施免受各种威胁。本文将为您介绍一些网络安全领域中常用的工具、框架、资源和学习资料&#xff0c;帮助您更好地入…...

『C语言入门』探索C语言函数

文章目录 导言一、函数概述定义与作用重要性 二、函数分类库函数自定义函数定义使用好处 三、函数参数实际参数&#xff08;实参&#xff09;形式参数&#xff08;形参&#xff09;内存分配 四、函数调用传值调用传址调用 五、函数嵌套调用与链式访问嵌套调用链式访问 六、函数…...

Django基础3——视图函数

文章目录 一、基本了解1.1 Django内置函数1.2 http请求流程 二、HttpRequest对象&#xff08;接受客户端请求&#xff09;2.1 常用属性2.2 常用方法2.3 服务端接收URL参数2.4 QueryDict对象2.5 案例2.5.1 表单GET提交2.5.2 表单POST提交2.5.3 上传文件 三、HttpResponse对象&am…...

python 基础篇 day 4 选择结构—— if 结构

文章目录 if 基础结构单 if 语句if-else 语句if-elif-else 语句嵌套的 if 语句 if 进阶用法使用比较运算符使用逻辑运算符使用 in 关键字range() 函数使用 is 关键字使用 pass 语句 三目运算符语法例子注意补充举例注意 if 基础结构 单 if 语句 if 条件: 执行条件为真时的代码…...

科技赋能,教育革新——大步迈向体育强国梦

在 "全民健身"、"体育强国建设"战略的推进下&#xff0c;体育考试成绩被纳入重要升学考试且分值不断提高&#xff0c;体育科目的地位逐步上升到前所未有的高度&#xff0c;在此趋势下&#xff0c;体育教学正演变出更多元化、个性化的需求。然而现实中却面临…...

【秋招基础】后端开发——笔面试常见题目

综述&#xff1a; &#x1f49e;目的&#xff1a;本系列是个人整理为了秋招算法的&#xff0c;整理期间苛求每个知识点&#xff0c;平衡理解简易度与深入程度。 &#x1f970;来源&#xff1a;材料主要源于网上知识点进行的&#xff0c;每个代码参考热门博客和GPT3.5&#xff0…...

自定义loadbalance实现feignclient的自定义路由

自定义loadbalance实现feignclient的自定义路由 项目背景 服务A有多个同事同时开发&#xff0c;每个同事都在dev或者test环境发布自己的代码&#xff0c;注册到注册中心有好几个(本文nacos为例)&#xff0c;这时候调用feign可能会导致请求到不同分支的服务上面&#xff0c;会…...

论文笔记:从不平衡数据流中学习的综述: 分类、挑战、实证研究和可重复的实验框架

0 摘要 论文&#xff1a;A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework 发表&#xff1a;2023年发表在Machine Learning上。 源代码&#xff1a;https://github.com/canoalberto/imba…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...