当前位置: 首页 > news >正文

织梦网站上传/关键词排名查询

织梦网站上传,关键词排名查询,常州百度推广优化,检查网站有没有做301时序预测 | MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测(含KELM、ELM等对比) 目录 时序预测 | MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测(含KELM、ELM等对比)预测效果基本介绍模型介绍程序设计参…

时序预测 | MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测(含KELM、ELM等对比)

目录

    • 时序预测 | MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测(含KELM、ELM等对比)
      • 预测效果
      • 基本介绍
      • 模型介绍
      • 程序设计
      • 参考资料
      • 致谢

预测效果

1
2

基本介绍

MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测(含KELM、ELM等对比)(完整源码和数据)

模型介绍

PSO-KELM,常用于时间序列预测任务。
PSO是一种基于群体智能的优化算法,它模拟了鸟群觅食的行为。在PSO中,每个个体被称为粒子,代表了解空间中的一个候选解。粒子通过在解空间中搜索来寻找最优解,同时根据个体最优和全局最优的信息进行调整和更新。PSO算法通过迭代更新粒子的位置和速度来逐步优化解的质量。
PSO-KELM的时间序列预测步骤如下:
准备时间序列数据集,将其划分为训练集和测试集。
初始化PSO算法的粒子群,并随机初始化粒子的位置和速度。
对于每个粒子,使用KELM算法,其中隐藏层的连接权重和偏置通过PSO进行优化。
根据训练得到的模型,对测试集进行预测。
评估预测结果的准确性。
根据预测准确性和PSO的优化目标,更新粒子的速度和位置。
重复步骤3至步骤6,直到达到预定的迭代次数或满足停止准则。
根据最优的粒子位置得到最终的连接权重和偏置,用于进行时间序列的预测。
需要注意的是,PSO-KELM算法的性能和结果可能会受到参数设置的影响,例如粒子数、迭代次数、网络的隐藏层节点数等。因此,在实际应用中需要根据具体问题进行调优和参数选择。

程序设计

  • 完整程序和数据下载地址方式:私信博主回复MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测(含KELM、ELM等对比
%% 各算法对比
clc;clear;close all
%%Positions = initialization(SearchAgents_no, dim, ub, lb);%%  用于记录迭代曲线
Convergence_curve = zeros(1, Max_iteration);
%%  循环计数器
iter = 0;%%  优化算法主循环
while iter < Max_iteration           % 对迭代次数循环for i = 1 : size(Positions, 1)   % 遍历Flag4ub = Positions(i, :) > ub;Flag4lb = Positions(i, :) < lb;% 若的位置在最大值和最小值之间,则位置不需要调整,若超出最大值,最回到最大值边界% 若超出最小值,最回答最小值边界Positions(i, :) = (Positions(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;   % 计算适应度函数值
%         Positions(i, 2) = round(Positions(i, 2));
%         fitness = fical(Positions(i, :));fitness = fobj(Positions(i, :));% 更新 Alpha, Beta, Deltaif fitness < Alpha_score           % 如果目标函数值小if fitness > Alpha_score && fitness > Beta_score && Delta_score = fitness;                                                 % 则将Delta的目标函数值更新为最优目标函数值Delta_pos = Positions(i, :);                                           % 同时更新Delta的位置endend% 线性权重递减wa = 2 - iter * ((2) / Max_iteration);    % 更新搜索群的位置for i = 1 : size(Positions, 1)      % 遍历每个for j = 1 : size(Positions, 2)  % 遍历每个维度% 包围猎物,位置更新r1 = rand; % r1 is a random number in [0,1]r2 = rand; % r2 is a random number in [0,1]A1 = 2 * wa * r1 - wa;   % 计算系数A,Equation (3.3)C1 = 2 * r2;             % 计算系数C,Equation (3.4)% Alpha 位置更新D_alpha = abs(C1 * Alpha_pos(j) - Positions(i, j));   % Equation (3.5)-part 1X1 = Alpha_pos(j) - A1 * D_alpha;                     % Equation (3.6)-part 1r1 = rand; % r1 is a random number in [0,1]r2 = rand; % r2 is a random number in [0,1]A2 = 2 * wa * r1 - wa;   % 计算系数A,Equation (3.3)C2 = 2 *r2;              % 计算系数C,Equation (3.4)% Beta 位置更新D_beta = abs(C2 * Beta_pos(j) - Positions(i, j));    % Equation (3.5)-part 2X2 = Beta_pos(j) - A2 * D_beta;                      % Equation (3.6)-part 2       r1 = rand;  % r1 is a random number in [0,1]r2 = rand;  % r2 is a random number in [0,1]A3 = 2 *wa * r1 - wa;     % 计算系数A,Equation (3.3)C3 = 2 *r2;               % 计算系数C,Equation (3.4)% Delta 位置更新D_delta = abs(C3 * Delta_pos(j) - Positions(i, j));   % Equation (3.5)-part 3X3 = Delta_pos(j) - A3 * D_delta;                     % Equation (3.5)-part 3% 位置更新Positions(i, j) = (X1 + X2 + X3) / 3;                 % Equation (3.7)endend% 更新迭代器iter = iter + 1;    Convergence_curve(iter) = Alpha_score;curve(iter)=sum(Convergence_curve)/iter;disp(['第',num2str(iter),'次迭代'])disp(['current iteration is: ',num2str(iter), ', best fitness is: ', num2str(Alpha_score)]);
end%%  记录最佳参数
% best_lr = Alpha_pos(1, 1);
% best_hd = Alpha_pos(1, 2);
% best_l2 = Alpha_pos(1, 3);
end
function result(true_value,predict_value,type)
disp(type)
rmse=sqrt(mean((true_value-predict_value).^2));
disp(['根均方差(RMSE):',num2str(rmse)])
mae=mean(abs(true_value-predict_value));
disp(['平均绝对误差(MAE):',num2str(mae)])
mape=mean(abs((true_value-predict_value)./true_value));
disp(['平均相对百分误差(MAPE):',num2str(mape*100),'%'])
r2 = R2(predict_value, true_value);
disp(['R平方决定系数(MAPE):',num2str(r2)])
nse = NSE(predict_value, true_value);
disp(['纳什系数(NSE):',num2str(nse)])fprintf('\n')

参考资料

[1] https://blog.csdn.net/kjm13182345320?spm=1010.2135.3001.5343
[2] https://mianbaoduo.com/o/bread/mbd-YpiamZpq
[3] SI Y W,YIN J. OBST-based segmentation approach to financial time series[J]. Engineering Applications of Artificial Intelligence,2013,26( 10) : 2581-2596.
[4] YUAN X,CHEN C,JIANG M,et al. Prediction Interval of Wind Power Using Parameter Optimized Beta Distribution Based LSTM Model[J]. Applied Soft Computing,2019,82:105550.143

致谢

  • 大家的支持是我写作的动力!
  • 感谢大家订阅,记得备注!

相关文章:

时序预测 | MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测(含KELM、ELM等对比)

时序预测 | MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测&#xff08;含KELM、ELM等对比&#xff09; 目录 时序预测 | MATLAB实现PSO-KELM粒子群算法优化核极限学习机时间序列预测&#xff08;含KELM、ELM等对比&#xff09;预测效果基本介绍模型介绍程序设计参…...

SSL/TLS协议的概念、工作原理、作用以及注意事项

个人主页&#xff1a;insist--个人主页​​​​​​ 本文专栏&#xff1a;网络基础——带你走进网络世界 本专栏会持续更新网络基础知识&#xff0c;希望大家多多支持&#xff0c;让我们一起探索这个神奇而广阔的网络世界。 目录 一、SSL/TLS协议的基本概念 二、SSL/TLS的工作…...

[Stable Diffusion教程] 第一课 原理解析+配置需求+应用安装+基本步骤

第一课 原理解析配置需求应用安装基本步骤 本次内容记录来源于B站的一个视频 以下是自己安装过程中整理的问题及解决方法&#xff1a; 问题&#xff1a;stable-diffusion-webui启动No Python at ‘C:\xxx\xxx\python.exe‘ 解答&#xff1a;打开webui.bat 把 if not de…...

uniapp结合Canvas+renderjs根据经纬度绘制轨迹(二)

uniapp结合Canvasrenderjs根据经纬度绘制轨迹 文章目录 uniapp结合Canvasrenderjs根据经纬度绘制轨迹效果图templaterenderjsjs数据结构 ​ 根据官方建议要想在 app-vue 流畅使用 Canvas 动画&#xff0c;需要使用 renderjs 技术&#xff0c;把操作canvas的js逻辑放到视图层运…...

VR全景加盟会遇到哪些问题?全景平台会提供什么?

想创业&#xff0c;你是否也遇到这些问题呢&#xff1f;我是外行怎么办&#xff1f;没有团队怎么办&#xff1f;项目回本周期快吗&#xff1f;项目靠谱吗&#xff1f;加盟平台可信吗&#xff1f;等等这类疑问。近几年&#xff0c;VR产业发展迅速&#xff0c;尤其是VR全景项目在…...

如何进行微服务的集成测试

集成测试的概念 说到集成测试&#xff0c;相信每个测试工程师并不陌生&#xff0c;它不是一个崭新的概念&#xff0c;通过维基百科定义可以知道它在传统软件测试中的含义。 Integration testing (sometimes called integration and testing, abbreviated I&T) is the pha…...

spark grpc 在master运行报错 exitcode13 User did not initialize spark context

程序使用sparksql 以及protobuf grpc &#xff0c;执行报错 ApplicationMaster: Final app status: FAILED, exitCode: 13, (reason: Uncaught exception: java.lang.IllegalStateException: User did not initialize spark context! 先说原因 &#xff1a; 1.使用了不具备权限…...

nginx 反向代理的原理

Nginx&#xff08;发音为"engine X"&#xff09;是一个高性能、轻量级的开源Web服务器和反向代理服务器。它的反向代理功能允许将客户端的请求转发到后端服务器&#xff0c;然后将后端服务器的响应返回给客户端。下面是Nginx反向代理的工作原理&#xff1a; 1.客户端…...

【SpringBoot】第二篇:RocketMq使用

背景&#xff1a; 本文会介绍多种案例&#xff0c;教大家如何使用rocketmq。 一般rocketmq使用在微服务项目中&#xff0c;属于分模块使用。这里使用springboot单体项目来模拟使用。 本文以windows系统来做案例。 下载rocketmq和启动&#xff1a; RocketMQ 在 windows 上运行…...

飞天使-vim简单使用技巧

此文是记录技巧使用&#xff0c;如果想节约时间&#xff0c;可以直接看最后一个章节 vim 的介绍 vim号称编辑器之神&#xff0c;唯快不破&#xff0c;可扩展&#xff0c;各种插件满天飞。 vi 1991 vim 1.14 vim四种模式 普通模式: 移动光标&#xff0c; 删除文本&#xff0c…...

分布式搜索引擎----elasticsearch

目录 1、初识elasticsearch 1.1、什么是elasticsearch 1.2.ELK技术栈 2、正向索引和倒排索引 2.1、正向索引 2.2、倒排索引 2.3、正向索引和倒排索引的区别 3、elasticsearch中的概念理解 3.1、文档和字段 3.2、索引和映射 3.3、mysql与elasticsearch 1、初识elasti…...

AnnotationConfigApplicationContext类和ClasspathXmlApplicationContext类的区别?

在 Spring Framework 中&#xff0c;AnnotationConfigApplicationContext 和 ClasspathXmlApplicationContext 是两个不同的应用程序上下文实现&#xff0c;用于配置和管理 Spring Bean 容器。它们之间的主要区别在于配置的方式和使用场景。 1. **AnnotationConfigApplication…...

使用VSCode SSH实现公网远程连接本地服务器开发的详细教程

文章目录 前言1、安装OpenSSH2、vscode配置ssh3. 局域网测试连接远程服务器4. 公网远程连接4.1 ubuntu安装cpolar内网穿透4.2 创建隧道映射4.3 测试公网远程连接 5. 配置固定TCP端口地址5.1 保留一个固定TCP端口地址5.2 配置固定TCP端口地址5.3 测试固定公网地址远程 前言 远程…...

Codeforces Round 894 (Div. 3)

还是打一下卡!!! (A,B,C) 目录 A. Gift Carpet 链接 : 题面 : 题目意思 : 思路 : 代码 : B. Sequence Game 链接 : 题面 : ​编辑 题目意思 : 思路 : 代码 : C. Flower City Fence 原题链接 : 题面 : 题目意思 : 思路 : 代码 : A. Gift Carpet 链…...

ACL2023 Prompt 相关文章速通 Part 1

Accepted Papers link: ACL2023 main conference accepted papers 文章目录 Accepted PapersPrompter: Zero-shot Adaptive Prefixes for Dialogue State Tracking Domain AdaptationQuery Refinement Prompts for Closed-Book Long-Form QAPrompting Language Models for Lin…...

“R语言+遥感“水环境综合评价方法

详情点击链接&#xff1a;"R语言遥感"水环境综合评价方法 一&#xff1a;R语言 1.1 R语言特点&#xff08;R语言&#xff09; 1.2 安装R&#xff08;R语言&#xff09; 1.3 安装RStudio&#xff08;R语言&#xff09; &#xff08;1&#xff09;下载地址 &…...

数据结构之哈希

哈希 1. 哈希概念2. 哈希冲突3. 哈希冲突解决3.1 哈希表的闭散列3.2 哈希表的开散列 2. 哈希的应用2.1 位图2.2 布隆过滤器 哈希&#xff08;Hash&#xff09;是一种将任意长度的二进制明文映射为较短的二进制串的算法。它是一种重要的存储方式&#xff0c;也是一种常见的检索方…...

可视化绘图技巧100篇基础篇(七)-散点图(一)

目录 前言 适用场景 图例 普通散点图与可视化 曲线图 气泡图...

关于什么是框架

框架&#xff08;Framework&#xff09;是一个框子——指其约束性&#xff0c;也是一个架子——指其支撑性。 IT语境中的框架&#xff0c;特指为解决一个开放性问题而设计的具有一定 性的支撑结构。在此结构上约束可以根据具体问题扩展、安插更多的组成部分&#xff0c;从而更迅…...

iOS开发Swift-集合类型

集合基本类型&#xff1a;数组 Array (有序)&#xff0c; 集合 Set (无序不重复)&#xff0c; 字典 Dictionary (无序键值对) 1.数组 Arrays (1)数组的表示 Array<Element> [Element](2)创建空数组 var someInts: [Int] [] someInts.count //数组长度(3)带值数组 var…...

【keepalived双机热备与 lvs(DR)】

目录 一、概述 1.简介 2.原理 3.作用 二、安装 1.配置文件 2.配置项 三、功能模块 1.core 2.vrrp 3.check 四、配置双机热备 1.master 2.backup 五、验证 1.ping验证 2.服务验证 六、双机热备的脑裂现象 七、keepalivedlvs&#xff08;DR&#xff09; 1.作…...

C++笔记之静态成员函数可以在类外部访问私有构造函数吗?

C笔记之静态成员函数可以在类外部访问私有构造函数吗&#xff1f; code review! 静态成员函数可以在类外部访问私有构造函数。在C中&#xff0c;访问控制是在编译时执行的&#xff0c;而不是在运行时执行的。这意味着静态成员函数在编译时是与类本身相关联的&#xff0c;而不…...

最新SQLMap进阶技术

SQLMap进阶&#xff1a;参数讲解 &#xff08;1&#xff09;–level 5&#xff1a;探测等级。 参数“–level 5”指需要执行的测试等级&#xff0c;一共有5个等级&#xff08;1~5级&#xff09;&#xff0c;可不加“level”&#xff0c;默认是1级。可以在xml/payloads.xml中看…...

【BurpSuite常用功能介绍】

BurpSuite的使用 1.运行BurpSuite 2.代理设置 打开软件后&#xff0c;我们第一件事就应该去调试软件和浏览器的代理&#xff0c;让BURP能够正常工作抓包 proxy--options&#xff0c;我端口默认使用8080 然后我们打开一个浏览器&#xff0c;进入代理设置 (注意一点&#xff0…...

Leetcode 108. 将有序数组转换为二叉搜索树

108. 将有序数组转换为二叉搜索树 分析 给定一个有序数组&#xff0c;要求转换为二叉搜索树。 数组是有序的&#xff0c;并且要求二叉树。 这里看到数组是有序的&#xff0c;马上想到二分&#xff0c;但是又不需要完全二分 实现。 再复习二叉搜索树的结构特点&#xff1a; 左…...

小匠物联联合亚马逊云助力企业数智化出海

如何让家电企业出海产品数智化之路走上康庄大道&#xff1f;8月25日,亚马逊云科技[创新成长企业专列]这趟上云快车将开往宁波站&#xff0c;助力宁波的制造、软件等企业扬帆起航&#xff01;现场举办“亚马逊云科技助力企业出海数智沙龙”&#xff0c;小匠物联受邀出席。 会议现…...

(五)k8s实战-配置管理

一、ConfigMap 使用 kubectl create configmap -h 查看示例&#xff0c;构建 configmap 对象 1) 基于文件夹&#xff0c;加载文件夹下所有配置文件&#xff0c;创建 kubectl create configmap <configmapName> --from-file<dirPath>2) 指定配置文件&#xff0c;创…...

GPT---1234

GPT:《Improving Language Understanding by Generative Pre-Training》 下载地址:https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdfhttps://cdn.openai.com/research-covers/language-unsupervised/language_understa…...

计算机竞赛 基于大数据的时间序列股价预测分析与可视化 - lstm

文章目录 1 前言2 时间序列的由来2.1 四种模型的名称&#xff1a; 3 数据预览4 理论公式4.1 协方差4.2 相关系数4.3 scikit-learn计算相关性 5 金融数据的时序分析5.1 数据概况5.2 序列变化情况计算 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &…...

python进行数据分析:数据预处理

六大数据类型 见python基本功 import numpy as np import pandas as pd数据预处理 缺失值处理 float_data pd.Series([1.2, -3.5, np.nan, 0]) float_data0 1.2 1 -3.5 2 NaN 3 0.0 dtype: float64查看缺失值 float_data.isna()0 False 1 …...