深度学习:Sigmoid函数与Sigmoid层区别
深度学习:Sigmoid
函数与Sigmoid
层
1. Sigmoid
神经网络层 vs. Sigmoid
激活函数
在深度学习和神经网络中,“Sigmoid” 是一个常见的术语,通常用来表示两个相关但不同的概念:Sigmoid激活函数和Sigmoid神经网络层。这两者在神经网络中的使用和功能有所不同。下面记录说明它们之间的区别。
1.1 Sigmoid激活函数
-
功能:Sigmoid激活函数是一种非线性函数,通常用于神经网络的隐藏层或输出层,以引入非线性特性。它将输入值映射到一个范围在0和1之间的输出。
-
数学形式:Sigmoid函数的数学形式如下:
Sigmoid(x) = 1 / (1 + e^(-x))
其中,e 表示自然对数的底,x 是输入。
- 用途:Sigmoid激活函数在过去的神经网络中经常使用,但现在通常更喜欢使用其他激活函数,如ReLU(Rectified Linear Unit)或其变种,因为它们在训练过程中更容易防止梯度消失问题。
1.2 Sigmoid神经网络层
-
功能:Sigmoid神经网络层是神经网络的一部分,通常连接到前一层的输出或其他层的输出。它使用Sigmoid激活函数作为其激活函数。这一层将输入数据进行线性变换,然后通过Sigmoid激活函数进行非线性变换。
-
用途:Sigmoid神经网络层通常用于二元分类问题的输出层,其中输出范围需要在0和1之间,以表示类别概率。当然,它也可以用于其他需要输出在0和1之间的任务,但在深度神经网络中,通常使用其他激活函数(如Softmax)来处理多类别分类问题。
总之,Sigmoid激活函数和Sigmoid神经网络层的主要区别在于它们在神经网络中的角色和用途。Sigmoid激活函数是一个数学函数,用于引入非线性特性,而Sigmoid神经网络层是神经网络的一部分,它使用Sigmoid激活函数来处理特定类型的任务,通常与输入和输出的维度有关。
2. Sigmoid神经网络层和Sigmoid激活函数与输入输出之间的维度关系
在深度学习中,了解Sigmoid神经网络层和Sigmoid激活函数与输入和输出之间的维度关系是非常重要的,这可以帮助更好的调试深度学习的代码,匹配各个层和函数之间的输入输出维度。以下是它们与输入和输出维度之间的关系的详细说明。
2.1 Sigmoid激活函数
-
输入维度:Sigmoid激活函数可以应用于任何实数输入。它将单个输入值映射到0和1之间的输出。这意味着它可以用于任何维度的输入数据,包括标量、向量或更高维度的张量。无论输入的维度如何,Sigmoid激活函数都将每个输入元素独立地映射到0和1之间。
-
输出维度:与输入维度相同。Sigmoid函数的输出与输入维度一致。
2.2 Sigmoid神经网络层
-
输入维度:Sigmoid神经网络层是神经网络的一部分,通常连接到前一层的输出或其他层的输出。因此,其输入维度取决于前一层或上一层的输出维度。神经网络的输入层通常具有与任务相关的维度。
-
输出维度:通常与输入维度相同,除非该层用于不同类型的任务。例如,在二元分类问题中,Sigmoid神经网络层的输出维度通常是1,因为它需要输出一个值,表示类别概率。在其他类型的任务中,输出维度可以根据需要进行调整。
总之,Sigmoid激活函数和Sigmoid神经网络层的输入和输出维度取决于它们在神经网络中的具体用途和连接方式,而不是由它们自身的性质决定。这些函数和层可以适用于不同维度的输入和输出,以满足各种深度学习任务的需求。
3. 代码示例
通过下面简单的代码可以更好的理解。
import torch
import torch.nn as nn# 创建一个包含Sigmoid激活函数的神经网络层
class SigmoidLayer(nn.Module):def __init__(self, input_dim, output_dim):super(SigmoidLayer, self).__init__()self.linear = nn.Linear(input_dim, output_dim)self.sigmoid = nn.Sigmoid()def forward(self, x):# 输入经过线性变换out = self.linear(x)print("Sigmoid层的输出:", out) # 查看维度# 然后通过Sigmoid激活函数out = self.sigmoid(out)return out# 创建示例输入数据
input_dim = 10 # 输入特征的维度
output_dim = 1 # 输出维度,在这个示例中为1# 创建Sigmoid层
sigmoid_layer = SigmoidLayer(input_dim, output_dim)# 创建示例输入张量
input_data = torch.randn(1, input_dim) # 输入数据的维度为(1, input_dim)# 将输入传递给Sigmoid层
output = sigmoid_layer(input_data)# 输出结果
print("输入数据:", input_data)
print("Sigmoid层的输出:", output)
通过程序可以更好的直观理解。
相关文章:
深度学习:Sigmoid函数与Sigmoid层区别
深度学习:Sigmoid函数与Sigmoid层 1. Sigmoid神经网络层 vs. Sigmoid激活函数 在深度学习和神经网络中,“Sigmoid” 是一个常见的术语,通常用来表示两个相关但不同的概念:Sigmoid激活函数和Sigmoid神经网络层。这两者在神经网络…...
❤ Ant Design Vue 2.28的使用
❤ Ant Design Vue 2.28 弹窗 //按钮 <a-button type"primary" click"showModal">Open Modal</a-button>//窗口 <a-modal v-model:visible"visible" title"Basic Modal" ok"handleOk"><p>Some con…...
R语言02-R语言中的向量
概念 在R语言中,向量(Vector)是最基本的数据结构之一,用于存储相同类型的多个元素。向量可以包含数值、字符、逻辑值等,但其中的所有元素必须具有相同的数据类型。向量可以通过c()函数创建,也可以通过其他…...
windows linux 都可执行的脚本 bat, shell 共存
核心, 执行一行解析一行 windows:执行的地方进行解析, 可以任意跳转执行; bash从上往下解析执行; 一行行解析发现语法错误; 差异: windows可以部分不解析; linux需要从上往下解析合法; 总结:linux, windows可以一上一下共存 # linux code# windows code 关键: 脚本解析的差…...
MATLAB图论合集(二)计算最小生成树
今天来介绍第二部分,图论中非常重要的知识点——最小生成树。作为数据结构的理论知识,Prim算法和克鲁斯卡尔算法的思想此处博主不详细介绍,建议在阅读本帖前熟练掌握。 对于无向带权图,在MATLAB中可以直接以邻接矩阵的方式创建出来…...
unity 模型显示在UI上 并交互(点击、旋转、缩放)
项目工程:unity模型显示在UI上并交互(点击、旋转、缩放)资源-CSDN文库 1.在Assets创建 Render Texture(下面会用到),根据需要设置Size 2.创建UIRawImage,并把Render Texture赋上 3.创建相机&am…...
html实现页面切换、顶部标签栏(可删、可切换,点击左侧超链接出现标签栏)
一、在一个页面(不跨页面) 效果: 代码 <!DOCTYPE html> <html><head><style>/* 设置标签页外层容器样式 */.tab-container {width: 100%;background-color: #f1f1f1;overflow: hidden;}/* 设置标签页选项卡的样式…...
n-皇后问题(DFS)
n−皇后问题是指将 n 个皇后放在 nn 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。 现在给定整数 n,请你输出所有的满足条件的棋子摆法。 输入格式 共一行,包含整数 n。 输出…...
漏洞利用和权限提升
使用Kali Linux进行漏洞利用和权限提升是渗透测试过程中的一部分,用于评估系统的安全性。 漏洞利用: 选择目标: 首先,确定 要进行漏洞利用的目标系统。这可能是一个具有已知漏洞的应用程序、服务或操作系统。 收集信息ÿ…...
开源网安受邀参加软件供应链安全沙龙,推动企业提升安全治理能力
8月23日下午,合肥软件行业软件供应链安全沙龙在中安创谷科技园举办。此次沙龙由合肥软件产业公共服务中心联合中安创谷科技园公司共同主办,开源网安软件供应链安全专家王晓龙、尹杰受邀参会并带来软件供应链安全方面的精彩内容分享,共同探讨…...
回归分析扫盲:为什么非线性模型不能直接用最优子集选择法
最近有人给我发了篇文章: 一个问题有一堆变量,我们要选取哪些变量来建模呢?我们来看看这篇文章是怎么做的: 这个方法简单来说就是:对于这一堆变量,我们每次尝试剔除其中一个变量,然后用剩下的变…...
单例模式简介
概念: 单例模式(Singleton Pattern)是一种创建型设计模式,它确保一个类只有一个实例,并提供全局访问点。单例模式的核心思想是限制某个类只能创建一个对象实例,并提供对该实例的全局访问。这样可以避免多个…...
WPF自定义命令及属性改变处理
1、项目建构 2、自定义命令 namespace WpfDemo.Base {public class MyCommand : ICommand{Action executeAction;public MyCommand(Action action){executeAction action;}public event EventHandler? CanExecuteChanged;public bool CanExecute(object? parameter){retu…...
macbook m1 docker中使用go
已经有一个centos8的镜像,本来打算在centos8中安装go 安装方法: # 1.下载go的安装包 mkdir install && cd install # 任意创建个文件夹 wget https://go.dev/dl/go1.20.2.linux-amd64.tar.gz# 2. 解压 tar -C xzf go1.20.2.linux-amd64.tar.g…...
【Hello Network】DNS协议 NAT技术 代理服务器
本篇博客简介:介绍DNS协议 NAT技术和代理服务器 网络各协议补充 DNSDNS背景DNS介绍DNS总结域名简介 NAT技术NAT技术背景NAT IP转换过程NAPTNAT技术缺陷NAT和代理服务器 网络协议总结应用层传输层网络层数据链路层 DNS DNS是一整套从域名映射到IP的系统 DNS背景 为…...
Android 使用模拟器模拟Linux操作系统
1. 简介 在Android手机上使用模拟器模拟ubuntu等操作系统,便于测试 2. 软件准备 Termux:是一款 Android 终端模拟器和 Linux 环境应用程序,无需 root 或设置即可直接运行。虽然酷安和谷歌菜市场都能下载,但这些渠道都很久没更新…...
机器学习基础之《分类算法(5)—朴素贝叶斯算法原理》
一、朴素贝叶斯算法 1、什么是朴素贝叶斯分类方法 之前用KNN算法,分类完直接有个结果,但是朴素贝叶斯分完之后会出现一些概率值,比如: 这六个类别,它都有一定的可能性 再比如,对文章进行分类:…...
# Go学习-Day6
文章目录 Go学习-Day6封装继承接口 Go学习-Day6 个人博客:CSDN博客 封装 类似java的类的封装,这里我们利用大小写和工厂模式来实现封装的功能略过 继承 相似的类具有相似的方法,反复绑定相同的方法,代码冗余,所以引…...
分布式 - 服务器Nginx:一小时入门系列之 HTTPS协议配置
文章目录 1. HTTPS 协议2. 生成 SSL 证书和私钥文件3. 配置 SSL 证书和私钥文件4. HTTPS 协议优化 1. HTTPS 协议 HTTPS 是一种通过计算机网络进行安全通信的协议。它是HTTP的安全版本,通过使用 SSL 或 TLS 协议来加密和保护数据传输。HTTPS的主要目的是确保在客户…...
探秘Linux系统性能监控神器!Linux和Python技术持续学习者必看!
引言 作为Linux运维工程师,我们经常需要对服务器的性能进行监控和调优。而Python作为一门强大的脚本语言,可以帮助我们轻松实现各种系统性能监控任务。本文将介绍几个实用的Python库和工具,帮助我们监控Linux系统的CPU、内存、磁盘和网络等性…...
文心一言续写太监小说《名侦探世界的巫师》
《名侦探世界的巫师》是我的童年回忆,总是想着续写一下,但是又没有时间和文笔,文心一言出了,由于目前大模型貌似可以联网,可以尝试搞一波~ 目录 文章1【前六个故事还能看,后面就是在重复】故事2【辣眼睛】…...
Solidity 合约安全,常见漏洞(第三篇)
Solidity 合约安全,常见漏洞(第三篇) ERC20 代币问题 如果你只处理受信任的 ERC20 代币,这些问题大多不适用。然而,当与任意的或部分不受信任的 ERC20 代币交互时,就有一些需要注意的地方。 ERC20&#…...
Linux安装Redis数据库,无需公网IP实现远程连接
文章目录 1. Linux(centos8)安装redis数据库2. 配置redis数据库3. 内网穿透3.1 安装cpolar内网穿透3.2 创建隧道映射本地端口 4. 配置固定TCP端口地址4.1 保留一个固定tcp地址4.2 配置固定TCP地址4.3 使用固定的tcp地址连接 Redis作为一款高速缓存的key value键值对的数据库,在…...
智慧政务,长远布局——AIGC引领,加速推进数字化政府建设
在人工智能、虚拟现实等领域迅猛发展且日益成熟的背景下,AI行业正迈向蓬勃发展的全新阶段,市场规模持续扩张。与此同时,数字服务也正在蓬勃兴起,新一代信息技术为数字政府构建了坚实支撑,重塑了政务信息化管理、业务架…...
中央处理器(CPU):组成、指令周期、数据通路、控制方式、控制器、指令流水线,补充(多处理器系统、硬件多线程)
中央处理器(CPU,Central Processing Unit),计算机控制和运算的核心,是信息处理和程序运行的执行单元。 CPU主要功能:处理指令、执行操作、控制时间、处理中断、处理数据。 其中,处理指令、执行…...
开源微服务如何选型?Spring Cloud、Dubbo、gRPC、Istio 详细对比
作者:刘军 不论您是一名开发者、架构师、CTO, 如果您曾深度参与在微服务开发中,那么相信您一定有过开源微服务框架或体系选型的疑问:Apache Dubbo、Spring Cloud、gRPC 以及 Service Mesh 体系产品如 Istio,到底应该选…...
Nginx的HTTPS部署与安全性能优化
Nginx作为一款高性能的Web服务器和反向代理服务器,被广泛用于应用部署和负载均衡。在安全环保意识的逐渐提高下,HTTPS也成为现代Web应用中必不可少的一环。本篇文章将重点介绍Nginx的HTTPS部署和安全性能优化。 一、Nginx的HTTPS部署 证书申请 首先需要去…...
5.8. Trusted Board Boot
5.8. Trusted Board Boot启动 Trusted Board Boot(TBB) 功能通过验证所有固件镜像(包括正常世界引导加载程序)来防止恶意固件在平台上运行。它通过使用公钥加密标准 (PKCS) 建立信任链来实现这一点。 本文介绍了可信固件-A (TF-A) TBB 的设计,它是Trusted Board Boot(TBBR…...
微信小程序——van-field中的left-icon属性自定义
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
一文学会lua脚本
文章目录 0.前言背景应用 1. 学习大纲1. 学习基本语法:2. 理解函数和模块:3. 深入数据结构:4. 高级特性和技巧:5. 实践项目: 2. Lua脚本2.1 学习基本语法2.2 理解函数和模块2.3 深入数据结构2.4 高级特性和技巧 3. 高级…...
wordpress 通配符替换/网址导航
disabled可以让input不提交,但displaynone不行; 且disabled必须逐个写在input标签上,写在input外面的div上是不起作用的。...
做导购网站赚钱吗/惠州百度推广优化排名
public class TestWhile{public static void main(String[] args){/*需求:用while循环打印出1到9的值*/int i 1;while(i < 9){System.out.println("i"i);i;}}}...
大朗仿做网站/电商怎么推广自己的产品
业务场景举例:快递选择收获区域、车辆电子围栏、运动轨迹路线、地理位置信息检测范围和地图等过滤等等。比方说地图上有一块区域(抽象成多边形),然后里面每一个位置点(像素点)都有对应的GPS的经纬度坐标值,题目要求的就是判断任意点(用户输入…...
哈尔滨网站建设效果/千万不要学网络营销
想打开页面自动定位到输入框并弹出输入法,试了很多方法都不行,后来看到下面这篇文章,安装他分析的思路,可能是要等view绘制完成了弹出输入法才有效,所以需要延时弹出输入法,试了,确实有效 http…...
北京营销型网站建设/软文广告经典案例300字
前言:内容包括:题目,代码实现,大致思路,代码解读 题目: 给你一个整数数组 nums,其中恰好有两个元素只出现一次,其余所有元素均出现两次。 找出只出现一次的那两个元素。你可以按 任…...
网站制作小常识/seo搜索引擎优化ppt
插上USB3.0的端口 在USB2.0的端口...