当前位置: 首页 > news >正文

【人工智能】—_不确定性、先验概率_后验概率、概率密度、贝叶斯法则、朴素贝叶斯_、最大似然估计

【人工智能】— 不确定性、先验概率/后验概率、概率密度、贝叶斯法则、朴素贝叶斯

文章目录

不确定性

在这里插入图片描述 在这里插入图片描述

不确定性与理性决策

在这里插入图片描述 在这里插入图片描述

基本概率符号

先验概率(无条件概率)/后验概率(条件概率)

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

随机变量

在这里插入图片描述 在这里插入图片描述

概率密度

在这里插入图片描述

联合概率分布

在这里插入图片描述在这里插入图片描述

在这里插入图片描述在这里插入图片描述

公理

在这里插入图片描述

完全联合分布

在这里插入图片描述 在这里插入图片描述

概率演算

在这里插入图片描述

独立性

在这里插入图片描述
在这里插入图片描述

贝叶斯法则

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

例1

你有两个信封可供选择。一个信封里有一个红球(价值100美元)和一个黑球,另一个信封里有两个黑球(价值为零)。
在这里插入图片描述

你随机选择一个信封,然后从该信封中随机取出一个球,结果是黑色的。

此时,你可以选择是否换另一个信封。问题是,你应该换还是不换?


E: envelope, 1表示有一个红球的信封,2表示都是黑球的信封 1 = ( R , B ) , 2 = ( B , B ) 1=(R,B), 2=(B,B) 1=(R,B),2=(B,B)

B: the event of drawing a black ball 拿到一个黑棋的事件

贝叶斯法则: P ( E ∣ B ) = P ( B ∣ E ) P ( E ) P ( B ) 贝叶斯法则:\\{}\\P(E|B) = \frac{P(B|E)P(E)}{P(B)} 贝叶斯法则:P(EB)=P(B)P(BE)P(E)

We want to compare 比较: P ( E = 1 ∣ B ) 比较:P(E=1|B) 比较:P(E=1∣B) vs. P ( E = 2 ∣ B ) P(E=2|B) P(E=2∣B)

在红球信封拿到黑球: P ( B ∣ E = 1 ) = 0.5 在黑球信封拿到黑球: P ( B ∣ E = 2 ) = 1 在红球信封拿到黑球:P(B|E=1) = 0.5 \\在黑球信封拿到黑球:P(B|E=2) = 1 在红球信封拿到黑球:P(BE=1)=0.5在黑球信封拿到黑球:P(BE=2)=1

拿到 1 、 2 信封的概率相同: P ( E = 1 ) = P ( E = 2 ) = 0.5 拿到1、2信封的概率相同:P(E=1) = P(E=2) = 0.5 拿到12信封的概率相同:P(E=1)=P(E=2)=0.5

抽到黑球的概率: B 在 E 取值上的边缘概率 P ( B ) = P ( B ∣ E = 1 ) P ( E = 1 ) + P ( B ∣ E = 2 ) P ( E = 2 ) = ( 0.5 ) ( 0.5 ) + ( 1 ) ( 0.5 ) = 0.75 \begin{aligned} &抽到黑球的概率:\\&{B在E取值上的边缘概率}\\ P(B) &= P(B|E=1)P(E=1) + P(B|E=2)P(E=2) \\ &= (0.5)(0.5) + (1)(0.5) \\ &= 0.75 \\ \end{aligned} P(B)抽到黑球的概率:BE取值上的边缘概率=P(BE=1)P(E=1)+P(BE=2)P(E=2)=(0.5)(0.5)+(1)(0.5)=0.75

已经抽到一个黑球,此信封是红球信封的概率: P ( E = 1 ∣ B ) = P ( B ∣ E = 1 ) P ( E = 1 ) P ( B ) = ( 0.5 ) ( 0.5 ) ( 0.75 ) = 1 3 已经抽到一个黑球,此信封是红球信封的概率:\\{} \\P(E=1|B) = \frac{P(B|E=1)P(E=1)}{P(B)} = \frac{(0.5)(0.5)}{(0.75)} = \frac{1}{3} 已经抽到一个黑球,此信封是红球信封的概率:P(E=1∣B)=P(B)P(BE=1)P(E=1)=(0.75)(0.5)(0.5)=31

已经抽到一个黑球,此信封是黑球信封的概率: P ( E = 2 ∣ B ) = P ( B ∣ E = 2 ) P ( E = 2 ) P ( B ) = ( 1 ) ( 0.5 ) ( 0.75 ) = 2 3 已经抽到一个黑球,此信封是黑球信封的概率:\\{} \\P(E=2|B) = \frac{P(B|E=2)P(E=2)}{P(B)} = \frac{(1)(0.5)}{(0.75)} = \frac{2}{3} 已经抽到一个黑球,此信封是黑球信封的概率:P(E=2∣B)=P(B)P(BE=2)P(E=2)=(0.75)(1)(0.5)=32
通过计算可得,抽到黑球后信封为 1 的概率为 1 / 3 , 信封为 2 的概率为 2 / 3 。因此,更换信封可以提高获得红球的概率。 通过计算可得,抽到黑球后信封为 1 的概率为 1/3,\\信封为 2 的概率为 2/3。因此,更换信封可以提高获得红球的概率。 通过计算可得,抽到黑球后信封为1的概率为1/3信封为2的概率为2/3。因此,更换信封可以提高获得红球的概率。


例2

一位医生进行一项测试,该测试有99%的可靠性,即99%的生病者测试结果为阳性,99%的健康者测试结果为阴性。这位医生估计整个人口中有1%的人是生病的。
因此,对于测试结果为阳性的患者,他是生病的概率是多少呢?


我们可以使用贝叶斯定理来计算患者生病的条件概率。设事件 S 表示患者生病,事件 T 表示测试结果为阳性。则所求的条件概率为:

P ( S ∣ T ) = P ( T ∣ S ) P ( S ) P ( T ) P(S|T) = \frac{P(T|S)P(S)}{P(T)} P(ST)=P(T)P(TS)P(S)

其中, P ( T ∣ S ) P(T|S) P(TS) 表示患者生病的条件下,测试结果为阳性的概率, P ( S ) P(S) P(S) 表示患者生病的先验概率 P ( T ) P(T) P(T) 表示测试结果为阳性的概率。

根据题目中给出的数据,我们有: P ( T ∣ S ) = 0.99 根据题目中给出的数据,我们有:\\P(T|S) = 0.99 根据题目中给出的数据,我们有:P(TS)=0.99
P ( S ) = 0.01 P(S) = 0.01 P(S)=0.01
P ( T ) = P ( T ∣ S ) P ( S ) + P ( T ∣ S ‾ ) P ( S ‾ ) P(T) = P(T|S)P(S) + P(T|\overline{S})P(\overline{S}) P(T)=P(TS)P(S)+P(TS)P(S)

其中, S ‾ 表示患者不生病。 其中,\overline{S}表示患者不生病。 其中,S表示患者不生病。

根据测试的可靠性,我们可以得到 P ( T ∣ S ‾ ) = 1 − P ( T ∣ S ) = 0.01 因此 P ( T ) = P ( T ∣ S ) P ( S ) + P ( T ∣ S ‾ ) P ( S ‾ ) = ( 0.99 ) ( 0.01 ) + ( 0.01 ) ( 0.99 ) = 0.0198 根据测试的可靠性,我们可以得到 \\P(T|\overline{S}) = 1-P(T|S)= 0.01 \\{}\\因此\\{}\\ \begin{aligned} P(T) &= P(T|S)P(S) + P(T|\overline{S})P(\overline{S}) \\ &= (0.99)(0.01) + (0.01)(0.99) \\ &= 0.0198 \\ \end{aligned} 根据测试的可靠性,我们可以得到P(TS)=1P(TS)=0.01因此P(T)=P(TS)P(S)+P(TS)P(S)=(0.99)(0.01)+(0.01)(0.99)=0.0198

代入贝叶斯公式,我们可以计算出患者生病的条件概率: P ( S ∣ T ) = ( 0.99 ) ( 0.01 ) 0.0198 ≈ 0.50 因此,测试结果为阳性的患者生病的概率约为 50 代入贝叶斯公式,我们可以计算出患者生病的条件概率:\\{}\\P(S|T) = \frac{(0.99)(0.01)}{0.0198} \approx 0.50\\{}\\因此,测试结果为阳性的患者生病的概率约为50%。 代入贝叶斯公式,我们可以计算出患者生病的条件概率:P(ST)=0.0198(0.99)(0.01)0.50因此,测试结果为阳性的患者生病的概率约为50


使用贝叶斯规则:合并证据

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

朴素贝叶斯

在这里插入图片描述

最大似然估计

最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种常用的参数估计方法,用于根据已知的样本数据来估计模型的参数。它的核心思想是选择能够使观测到的数据出现的概率最大的参数作为估计值。

具体来说,在最大似然估计中,我们假设样本数据来自于某个概率分布,但是该分布的参数是未知的。我们的目标是通过样本数据来估计这些参数,使得该分布能够最好地解释观测到的数据。

假设我们有一个样本集合 X = x 1 , x 2 , . . . , x n X={x_1, x_2, ..., x_n} X=x1,x2,...,xn,每个样本都是来自于某个分布 f ( x ∣ θ ) f(x|\theta) f(xθ) 的观测值,其中 θ \theta θ 是分布的参数。我们要找到能够最大化样本集合 X X X 的联合概率密度函数 L ( X ∣ θ ) L(X|\theta) L(Xθ) 的参数值 θ \theta θ。这个联合概率密度函数可以表示为:

L ( X ∣ θ ) = ∏ i = 1 n f ( x i ∣ θ ) L(X|\theta) = \prod_{i=1}^n f(x_i|\theta) L(Xθ)=i=1nf(xiθ)

我们的目标是找到能够最大化 L ( X ∣ θ ) L(X|\theta) L(Xθ) θ \theta θ 值。因此,最大似然估计的计算可以表示为:

θ ^ M L E = arg ⁡ max ⁡ θ L ( X ∣ θ ) \hat{\theta}_{MLE} = \arg\max_{\theta} L(X|\theta) θ^MLE=argθmaxL(Xθ)

有时候我们需要对上式取对数来避免计算机计算下溢,得到的式子为:

θ ^ M L E = arg ⁡ max ⁡ θ log ⁡ L ( X ∣ θ ) = arg ⁡ max ⁡ θ ∑ i = 1 n log ⁡ f ( x i ∣ θ ) \hat{\theta}_{MLE} = \arg\max_{\theta} \log L(X|\theta) = \arg\max_{\theta} \sum_{i=1}^n \log f(x_i|\theta) θ^MLE=argθmaxlogL(Xθ)=argθmaxi=1nlogf(xiθ)

最大似然估计方法是一种常用的参数估计方法,具有计算简单、理论基础好等优点。它在统计学、机器学习、信号处理等领域都得到了广泛应用。

小结

以下是对概率论中重要的公式的整理:


  1. 条件概率公式:

对于事件 A 和事件 B,其条件概率表示为 P ( A ∣ B ) P(A|B) P(AB),表示在事件 B 发生的条件下,事件 A 发生的概率。条件概率公式为:
P ( A ∣ B ) = P ( A , B ) P ( B ) P(A|B) = \frac{P(A,B)}{P(B)} P(AB)=P(B)P(A,B)

  1. 乘法规则公式:

对于事件 A 和事件 B,其联合概率表示为 P ( A , B ) P(A,B) P(A,B),表示事件 A 和事件 B 同时发生的概率。乘法规则公式为:

P ( A , B ) = P ( A ∣ B ) P ( B ) P(A,B) = P(A|B)P(B) P(A,B)=P(AB)P(B)


  1. 链式规则公式:

对于多个事件 A , B , C , D A,B,C,D A,B,C,D,其联合概率表示为 P ( A , B , C , D ) P(A,B,C,D) P(A,B,C,D),链式规则公式可以表示为:

P ( A , B , C , D ) = P ( A ∣ B , C , D ) P ( B ∣ C , D ) P ( C ∣ D ) P ( D ) P(A,B,C,D) = P(A|B,C,D)P(B|C,D)P(C|D)P(D) P(A,B,C,D)=P(AB,C,D)P(BC,D)P(CD)P(D)


  1. 条件化的链式规则公式:

对于事件 A 和事件 B,其联合概率表示为 P ( A , B ) P(A,B) P(A,B),条件化的链式规则公式可以表示为:

P ( A , B ∣ C ) = P ( A ∣ B , C ) P ( B ∣ C ) P(A,B|C) = P(A|B,C)P(B|C) P(A,BC)=P(AB,C)P(BC)

P ( A , B ∣ C ) P ( C ) = P ( A , B , C ) P ( A ∣ B , C ) P ( B ∣ C ) P ( B , C ) P ( B ∣ C ) = P ( A , B , C ) P(A,B|C) = P ( A ∣ B , C ) P ( B ∣ C ) P ( B , C ) P ( B ∣ C ) P ( C ) = P ( A ∣ B , C ) P ( B ∣ C ) P ( B ∣ C ) P ( B ∣ C ) = P(A|B,C)P(B|C) P(A,B|C)P(C)=P(A,B,C) \\{} \\ \frac{P(A|B,C)P(B|C)P(B,C)}{P(B|C)}=P(A,B,C) \\{} \\ \textbf{P(A,B|C)} = \frac{P(A|B,C)P(B|C)P(B,C)}{P(B|C)P(C)} \\{} \\= \frac{P(A|B,C)P(B|C)P(B|C)}{P(B|C)}=\textbf{P(A|B,C)P(B|C)} P(A,BC)P(C)=P(A,B,C)P(BC)P(AB,C)P(BC)P(B,C)=P(A,B,C)P(A,B|C)=P(BC)P(C)P(AB,C)P(BC)P(B,C)=P(BC)P(AB,C)P(BC)P(BC)=P(A|B,C)P(B|C)


  1. 贝叶斯定理公式:

贝叶斯定理是根据先验概率和条件概率来计算后验概率的一种方法,可以用于分类、预测等任务。贝叶斯定理公式为:

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)


  1. 条件化的贝叶斯定理公式:

对于事件 A 和事件 B,条件化的贝叶斯定理公式可以表示为:

P ( A ∣ B , C ) = P ( B ∣ A , C ) P ( A ∣ C ) P ( B ∣ C ) P(A|B,C) = \frac{P(B|A,C)P(A|C)}{P(B|C)} P(AB,C)=P(BC)P(BA,C)P(AC)


  1. 加法/条件概率公式:

对于事件 A 和事件 B,加法/条件概率公式可以表示为:

P ( A ) = P ( A , B ) + P ( A , ¬ B ) = P ( A ∣ B ) P ( B ) + P ( A ∣ ¬ B ) P ( ¬ B ) P(A) = P(A,B) + P(A,\neg B) = P(A|B)P(B) + P(A|\neg B)P(\neg B) P(A)=P(A,B)+P(A,¬B)=P(AB)P(B)+P(A∣¬B)P(¬B)


这些公式在概率论中非常重要,可以应用于统计学、机器学习、信号处理、金融领域、医学领域等各个领域的问题中。熟练掌握这些公式可以帮助我们更好地理解和解决实际问题。

相关文章:

【人工智能】—_不确定性、先验概率_后验概率、概率密度、贝叶斯法则、朴素贝叶斯_、最大似然估计

【人工智能】— 不确定性、先验概率/后验概率、概率密度、贝叶斯法则、朴素贝叶斯 文章目录 【人工智能】— 不确定性、先验概率/后验概率、概率密度、贝叶斯法则、朴素贝叶斯不确定性不确定性与理性决策基本概率符号先验概率(无条件概率)/后验概率(条件概率)随机变量概率密度联…...

postgresql-字符函数

postgresql-字符函数 字符串连接字符与编码字符串长度大小写转换子串查找与替换截断与填充字符串格式化MD5 值字符串拆分字符串反转 字符串连接 concat(str, …)函数用于连接字符串,并且忽略其中的 NULL 参数;concat_ws(sep, str, …) 函数使用指定分隔…...

VUE笔记(五)网络通信

一、axios的简介 1、什么是axios 文档:Axios 中文文档 | Axios 中文网 | Axios 是一个基于 promise 的网络请求库,可以用于浏览器和 node.js 概念:axios是一个基于Promise的网络请求库,可以用于浏览器和node.js 特点&#xff…...

微信小程序修改数据,input不能实时回显

场景: 填写发票抬头,填写抬头公司时候,会根据用户输入的内容实时获取相关的公司信息,用户选择搜索出来的公司,这时候 setData,但是数据并没有回显,而是需要再需要点一下屏幕。 解决方案: 原来…...

GitHub Copilot三连更:能在代码行里直接提问,上下文范围扩展到终端

量子位 | 公众号 QbitAI 就在昨晚,GitHub Copilot迎来了一波不小的更新。 包括: 全新交互体验——代码行中直接召唤聊天功能,不用切界面,主打一个专注; 改善斜杠命令,一键删除,主打快捷操作、…...

双亲委派机制

双亲委派机制流程 当Application ClassLoader 收到一个类加载请求时,他首先不会自己去尝试加载这个类,而是将这个请求委派给父类加载器Extension ClassLoader去完成。 当Extension ClassLoader收到一个类加载请求时,他首先也不会自己去尝试…...

美团北极星榜单,服务零售的医美新样本

事实证明,任何时候,人们对美的追求都是刚需,只是有时候被压抑了。 德勤中国的《中国医美行业2023年度洞悉报告》(以下简称“报告”)显示,中国医美市场规模预计在2023年超过2000亿元,实现20%增速…...

geant4 常用代码

1 获取特特定能量范围的特定粒子 E:\examples_understanding\geant4-v11.0.0_note\examples\extended\runAndEvent\RE02 //-- Particle with kinetic energy filter.G4SDParticleWithEnergyFilter* pkinEFilter new G4SDParticleWithEnergyFilter(fltName"gammaE filter&…...

重要通知!eBay将升级买家满意度考核,如何让你的店铺脱颖而出?

8月份,eBay发布了重要通知,为促进跨境卖家积极提升买家体验,升级了针对卖家的买家满意度考核。其中,产品质量是买家满意度考核的核心,是中国卖家急需提升的重中之重,也是eBay考核的重点。 eBay将着眼于产品…...

PHP中pack、unpack的用法

pack string pack ( string $format [, mixed $args [, mixed $... ]] ) 该函数用来将对应的参数($args)打包成二进制字符串。 其中第一个参数$format,有如下选项: a 以NUL字节填充字符串空白 A 以SPACE(空格)填充字符串 h 十六进制字符串&…...

KUKA机器人零点标定的具体方法

KUKA机器人零点标定的具体方法 在进行机器人校正时,先将各轴置于一个定义好的机械位置,即所谓的机械零点。这个机械零点位置表明了同轴的驱动角度之间的对应关系,它用一个测量刻槽表示。 为了精确地确定机器人某根轴的机械零点位置,一般应先找到其预校正位置,然后去掉测量…...

基于SpringBoot+Vue的旅游系统

摘 要 随着旅游业的发展,越来越多的人选择旅游作为自己的出行方式。在旅游规划过程中,旅游景点选择是至关重要的环节。本文提出了一种基于协同过滤推荐算法的旅游平台系统。该系统采用前后端分离的设计,主要使用了SpringBoot、Vue等技术&…...

leetcode算法题--复杂链表的复制

原题链接:https://leetcode.cn/problems/fu-za-lian-biao-de-fu-zhi-lcof/description/?envTypestudy-plan-v2&envIdcoding-interviews 感觉一开始想到的办法还是比较笨 /*** Definition for a Node.* type Node struct {* Val int* Next *Node* …...

C++面试题(叁)---操作系统篇

目录 操作系统篇 1 Linux中查看进程运行状态的指令、查看内存使用情况的指令、 tar解压文件的参数。 2 文件权限怎么修改 3 说说常用的Linux命令 4 说说如何以root权限运行某个程序。 5 说说软链接和硬链接的区别。 6 说说静态库和动态库怎么制作及如何使用,区…...

算法笔记:KD树

1 引入原因 K近邻算法需要在整个数据集中搜索和测试数据x最近的k个点,如果一一计算,然后再排序,开销过大 引入KD树的作用就是对KNN搜索和排序的耗时进行改进 2 KD树 2.1 主体思路 以空间换时间,利用训练样本集中的样本点&…...

plumelog介绍与应用-一个简单易用的java分布式日志系统

官方文档:http://www.plumelog.com/zh-cn/docs/FASTSTART.html 简介 无代码入侵的分布式日志系统,基于log4j、log4j2、logback搜集日志,设置链路ID,方便查询关联日志基于elasticsearch作为查询引擎高吞吐,查询效率高全…...

百度网盘删除“我的应用数据”文件夹

百度网盘删除“我的应用数据”文件夹电脑端方法-2023.2.27成功 - 哔哩哔哩 (bilibili.com) 百度网盘怎样删除我的应用数据文件夹-手机端方法-2023.3.24日成功 - 哔哩哔哩 (bilibili.com)...

多店铺智能客服,助力店铺销量倍增

近年来电商发展得非常快速,市场竞争也是愈发激烈了。商家不仅需要提高产品和服务的质量,还要争取为自己获取更多的曝光,以此来分散运营的风险和降低经营的成本,所以越来越多的商家也开始转向多平台多店铺运营。但即使运营多个平台…...

会话跟踪技术

cookie 是通过在浏览器第一次请求服务器时,在响应中放入cookie,浏览器接收到cookie后保存在本地,之后每次请求服务器时都将cookie携带到请求头中,用来验证用户身份与状态等。 缺点: 移动端app没有cookiecookie保存在…...

递归算法学习——子集

目录 一,题目解析 二,例子 三,题目接口 四,解题思路以及代码 1.完全深度搜索 2.广度搜索加上深度优先搜索 五,相似题 1.题目 2.题目接口 3.解题代码 一,题目解析 给你一个整数数组 nums &#xff0c…...

学习笔记:ROS使用经验(ROS报错)

报错:进程崩溃 ] process has died [pid 734, exit code -5, cmd /root/catkin_ws/devel/lib/pose_graph/pose_graph __name:pose_graph __log:/root/.ros/log/31b0ae1c-3295-11ee-bda9-02429b5737dc/pose_graph-5.log]. log file: /root/.ros/log/31b0ae1c-3295-11…...

设计模式二十四:访问者模式(Visitor Pattern)

用于将数据结构与数据操作分离,使得可以在不修改数据结构的情况下,定义新的操作。访问者模式的核心思想是,将数据结构和操作进行解耦,从而使得新增操作时不必修改数据结构,只需添加新的访问者。主要目的是在不改变数据…...

使用gn+Ninja构建项目

使用下载编译好的gn和ninja报错 先下载了gn的源码[gn.googlesource.com/gn],然后编译报错,就直接下载了了编译号的gn和Ninja,然后写了Helloworld应用的BUILD.gn,然后将"gn\examples\simple_build\build"拷贝至当前目录…...

VMware虚拟机连不上网络

固定ip地址 进入网络配置文件 cd /etc/sysconfig/network-scripts 打开文件 vi ifcfg-ens33 编辑 BOOTPROTO设置为static,有3个值(decp、none、static) BOOTPROTO"static" 打开网络 ONBOOT"yes" 固定ip IPADDR1…...

安防视频监控/视频集中存储/云存储平台EasyCVR平台无法取消共享通道该如何解决?

视频汇聚/视频云存储/集中存储/视频监控管理平台EasyCVR能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,实现视频资源的鉴权管理、按需调阅、全网分发、云存储、智能分析等,视频智能分析平台EasyCVR融合性强、开放度…...

算法通关村-----如何基于数组和链表实现栈

实现栈的基本方法 push(T t)元素入栈 T pop() 元素出栈 Tpeek() 查看栈顶元素 boolean isEmpty() 栈是否为空 基于数组实现栈 import java.util.Arrays;public class ArrayStack<T> {private Object[] stack;private int top;public ArrayStack() {this.stack new…...

day-05 TCP半关闭 ----- DNS ----- 套接字的选项

一、优雅的断开套接字连接 之前套接字的断开都是单方面的。 &#xff08;一&#xff09;基于TCP的半关闭 Linux的close函数和windows的closesocket函数意味着完全断开连接。完全断开不仅不能发送数据&#xff0c;从而也不能接收数据。在某些情况下&#xff0c;通信双方的某一方…...

区块链金融项目怎么做?

区块链技术的兴起引发了金融领域的变革&#xff0c;为金融行业带来了前所未有的机遇与挑战。在这个快速发展的领域中&#xff0c;如何在区块链金融领域做出卓越的表现&#xff1f;本文将从专业性和思考深度两个方面&#xff0c;探讨区块链金融的发展路径&#xff0c;并为读者提…...

Redis与数据库保持一致

参考链接 先更新数据库&#xff0c;再更新redis 存在漏洞&#xff0c;如果更新Redis失败&#xff0c;仍然会导致不一致 先删Redis&#xff0c;再更新数据库并同步数据到Redis 存在漏洞&#xff0c;多线程情况下,线程1删除redis后&#xff0c;还是有可能被其他线程读取旧的数据…...

idea中vue项目 npm安装插件后node modules中找不到

从硬盘中重新加载一下...

已知两地经纬度,计算两地直线距离

文章目录 1 原理公式2 代码实现2.1 JavaScript2.2 C2.3 Python2.4 MATLAB 1 原理公式 在地球上&#xff0c;计算两点之间的直线距离通常使用地理坐标系&#xff08;例如WGS84&#xff09;。计算两地直线距离的公式是根据经纬度之间的大圆距离&#xff08;Great Circle Distanc…...

我想开通期权?如何开通期权账户?

场内期权的合约由交易所统一标准化定制&#xff0c;大家面对的同一个合约对应的价格都是一致的&#xff0c;比较公开透明&#xff0c;期权开户当天不能交易的&#xff0c;期权开户需要满足20日日均50万及半年交易经验即可操作&#xff0c;下文科普我想开通期权&#xff1f;如何…...

ChatGPT对软件测试的影响

ChatGPT 是一个经过预训练的 AI 语言模型&#xff0c;可以通过聊天的方式回答问题&#xff0c;或者与人闲聊。它能处理的是文本类的信息&#xff0c;输出也只能是文字。它从我们输入的信息中获取上下文&#xff0c;结合它被训练的大模型&#xff0c;进行分析总结&#xff0c;给…...

minion在ubuntu上的搭建步骤

在Ubuntu上搭建MinIO可以按照以下步骤进行&#xff1a; 下载MinIO服务器二进制文件&#xff1a; 通过浏览器访问 https://min.io/download 或使用以下命令获取最新的MinIO二进制文件&#xff1a;wget https://dl.min.io/server/minio/release/linux-amd64/minio赋予二进制文件…...

Leetcode刷题笔记--Hot31-40

1--颜色分类&#xff08;75&#xff09; 主要思路&#xff1a; 快排 #include <iostream> #include <vector>class Solution { public:void sortColors(std::vector<int>& nums) {quicksort(nums, 0, nums.size()-1);}void quicksort(std::vector<int…...

【Python】环境配置,【Pytorch】GPU版本安装

总结&#xff1a; 使用conda新建切换环境&#xff0c;然后使用pip安装卸载包 【python】pip conda_conda list没有pytorch_myaijarvis的博客-CSDN博客 pip换源 https://blog.csdn.net/maotenghua/article/details/104188086 在当前用户目录下创建pip目录&#xff0c;即C:\U…...

BEVFusion复现 (Ubuntu RTX3090)

https://github.com/ADLab-AutoDrive/BEVFusion 1.环境安装 我的机器是RTX3090&#xff0c;CUDA11.1 1.创建虚拟环境 conda create -n bevfusion python3.8.3 2.安装PyTorch 和 torchvision pip install torch1.8.0cu111 torchvision0.9.0cu111 torchaudio0.8.0 -f https://…...

Python基础知识学习与回顾

Python学习 Python基本语法 标识符 标识符由数字、字符串、下划线构成。 注意事项&#xff1a; 标识符不以数字开头区分大小写下划线开头的标识符具有特殊意义保留字&#xff0c;Python保留了一些关键字&#xff0c;这些关键字都是通过小写字母进行保存。 下划线开头的特…...

SpringBoot笔记——(狂神说)——待续

路线 javase: OOPmysql:持久化 htmlcssjsjquery框架:视图&#xff0c;框架不熟练&#xff0c;css不好; javaweb:独立开发MVC三层架构的网站了∶原始 ssm :框架:简化了我们的开发流程&#xff0c;配置也开始较为复杂; war: tomcat运行 spring再简化: SpringBoot - jar:内嵌tomca…...

Linux TCP编程流程

一、TCP编程流程 TCP 提供的是面向连接的、可靠的、字节流服务。TCP的服务器端和客户端编程流程如下&#xff1a; 1.socket()方法 用来创建一个套接字&#xff0c;有了套接字就可以通过网络进行数据的收发。这也是为什么进行网络通信的程序首先要创建一个套接字。创建套接字时…...

pyqt5 QuickStart

在使用pyqt5之前&#xff0c;建议下载一个Anaconda环境&#xff0c;这样下载python包更方便&#xff0c;本篇文章是建立在已经安装好Anaconda的情况下使用的。IDE就是标准的PyCharm了。 一、pyqt包的安装 python终端执行下面两个安装命令&#xff1a; pip install PyQt5 pip …...

Qt6 for Windows 环境搭建(Visual Studio)

作者&#xff1a; 一去、二三里 个人微信号&#xff1a; iwaleon 微信公众号&#xff1a; 高效程序员 在 Windows 中&#xff0c;如果想要开发 Qt 应用程序&#xff0c;可以选择多种方式&#xff1a; Qt Creator MinGW 编译器Qt Creator MSVC 编译器Visual Studio&#xff0…...

探索未知世界:桌面端3D GIS引领地理信息新时代

近年来&#xff0c;桌面端的三维地理信息系统&#xff08;3D GIS&#xff09;在地理信息领域迎来了显著的发展&#xff0c;为我们带来了更深入、更丰富的地理空间认知和数据分析体验。从城市规划到环境保护&#xff0c;从资源管理到应急响应&#xff0c;桌面端的3D GIS正逐渐成…...

微信小程序 趣味学习与益智游戏系统APP

管理员、用户可通过HBuilder系统手机打开系统&#xff0c;注册登录后可进行管理员后端&#xff1b;首页、个人中心、用户管理、学生分类管理、学一学管理、玩一玩管理、听一听管理、试题管理、练一练管理、系统管理、考试管理&#xff0c;用户前端&#xff1b;首页、学一学、玩…...

【单片机】UART、I2C、SPI、TTL、RS232、RS422、RS485、CAN、USB、SD卡、1-WIRE、Ethernet等常见通信方式

在单片机开发中&#xff0c;UART、I2C、RS485等普遍在用&#xff0c;这里做一个简单的介绍 UART通用异步收发器 UART口指的是一种物理接口形式(硬件)。 UART是异步&#xff08;指不使用时钟同步&#xff0c;依靠帧长进行判断&#xff09;&#xff0c;全双工&#xff08;收发…...

【Java从0到1学习】13 Java IO流

1. 流 1.1 流的概念 流(stream)的概念源于UNIX中管道(pipe)的概念。在UNIX中&#xff0c;管道是一条不间断的字节流&#xff0c;用来实现程序或进程间的通信&#xff0c;或读写外围设备、外部文件等。 一个流&#xff0c;必有源端和目的端&#xff0c;它们可以是计算机内存的…...

linux并发服务器 —— 多进程并发(四)

进程概述 程序是包含一系列信息的文件&#xff0c;描述了如何在运行时创建一个进程&#xff1b; 进程是正在运行的程序的实例&#xff0c;可以用一个程序来创建多个进程&#xff1b; 用户内存空间包含程序代码以及代码所使用的变量&#xff0c;内核数据结构用于维护进程状态…...

华为云Stack的学习(四)

五、Service OM资源管理 1.Service OM简介 1.1 Service OM介绍 在华为云Stack解决方案中&#xff0c;Service OM是FusionSphere OpenStack的操作管理界面&#xff0c;是资源池&#xff08;计算、存储、网络&#xff09;以及基础云服务的管理工具。 1.2 Service OM定位 Serv…...

Midjourney 完整版教程(从账号注册到设计应用)

目录 一、Midjourney 介绍 二、Midjourney 的AI出图示例 三、手把手教你上手Midjourney 1、账号&初始化 1.1 账号注册登录 1.2 账号付费 1.3 账号初始化 2、Midjourney的基础设置 3、Midjourney 出图步骤。 (一)直接描述出图 (二)垫图生图。 4、Midjourney的…...

保护香港服务器的方法

保护香港服务器的方法 当你把一个香港服务器完全留给一个组织、应用程序或个人使用时&#xff0c;它被称为香港服务器租用。在这种类型的主机配置中&#xff0c;客户端将会借出整个服务器&#xff0c;并且不允许其他任何人使用它。 如果您计划使用香港服务器&#xff0c;安全性…...