用NeRFMeshing精确提取NeRF网络中的3D网格
准确的 3D 场景和对象重建对于机器人、摄影测量和 AR/VR 等各种应用至关重要。 NeRF 在合成新颖视图方面取得了成功,但在准确表示底层几何方面存在不足。
推荐:用 NSDT编辑器 快速搭建可编程3D场景
我们已经看到了最新的进展,例如 NVIDIA 的 Neuralangelo,但也有 NeRFMeshing,它被提议通过从 NeRF 驱动的网络中提取精确的 3D 网格来解决这一挑战。NeRFMeshing生成的网格在物理上是准确的,并且可以在不同的设备上实时渲染。
1、NeRFMeshing概述
虽然 NeRF 在图像质量、鲁棒性和渲染速度方面显示出令人印象深刻的结果,但从辐射场获取准确的 3D 网格仍然是一个挑战。 现有的表示主要针对视图合成进行优化,而不是明确强制执行精确的几何形状。 这导致使用体积的密集区域而不是零厚度的水平设置表面来近似表面。 此外,大多数以前的方法缺乏实时渲染功能以及与标准 3D 图形管道的兼容性。
NeRFMeshing 提出了一种新颖的管道,用于从经过训练的基于 NeRF 的网络中有效地提取几何精确的网格。 该方法仅增加很小的时间开销,并生成具有精确几何形状和神经颜色的网格,可以在通用硬件上实时渲染。
NeRFMeshing的关键组件是有符号表面近似网络 (SSAN: Signed Surface Appriximation Network),它训练后处理 NeRF 管道来定义底层表面和外观。 SSAN 估计截断符号距离场 (TSDF: Truncated Signed Distance Field) 和特征外观场,从而能够提取场景的 3D 三角形网格。 然后使用外观网络渲染该网格以生成与视图相关的颜色。
2、NeRFMeshing的优势
与替代方法相比,NeRFMeshing 具有多种优势。 它可以与任何 NeRF 架构相结合,从而轻松融入该领域的新进展。 该方法可以处理无界场景和复杂的非朗伯表面。 NeRFMeshing 还保持了神经辐射场的高保真度,包括视图相关的效果和反射,使其适合实时新颖的视图合成。
人们已经探索了学习有符号距离函数 (SDF: Signed Distance Field) 等替代方法来提取高质量网格,但通常需要额外的输入模式或固定网格模板。 另一方面,NeRFMeshing 利用 NeRF 的自适应能力来稳健地表示 3D 场景,而无需修改 NeRF 架构。 它克服了可微分网格光栅化器面临的优化问题,并实现了速度和几何精度。
NeRFMeshing 提供了一个端到端管道,用于利用 NeRF 的神经特征提取精确的 3D 网格。 该过程涉及从图像训练 NeRF 网络,然后将训练后的网络提炼到 SSAN 模型中。 该模型估计 TSDF 和外观场,从而可以提取 3D 网格。 生成的网格可以无缝集成到图形和模拟管道中,并实现依赖于视图的实时渲染。
NeRFMeshing 引入了一种从 NeRF 驱动的网络获取精确 3D 网格的新颖方法,解决了精确几何表示的挑战。 生成的网格可以实时渲染并提供高保真度,使其适合各种应用。 NeRFMeshing 的灵活性允许与不同的 NeRF 架构和未来的进步轻松集成。 该方法为真实 3D 场景和对象重建提供了可能性,从而实现基于物理的模拟、实时可视化和交互。
原文链接:NeRFMeshing网格提取 — BimAnt
相关文章:

用NeRFMeshing精确提取NeRF网络中的3D网格
准确的 3D 场景和对象重建对于机器人、摄影测量和 AR/VR 等各种应用至关重要。 NeRF 在合成新颖视图方面取得了成功,但在准确表示底层几何方面存在不足。 推荐:用 NSDT编辑器 快速搭建可编程3D场景 我们已经看到了最新的进展,例如 NVIDIA 的…...

权限提升-Windows本地提权-AT+SC+PS命令-进程迁移-令牌窃取-getsystem+UAC
权限提升基础信息 1、具体有哪些权限需要我们了解掌握的? 后台权限,网站权限,数据库权限,接口权限,系统权限,域控权限等 2、以上常见权限获取方法简要归类说明? 后台权限:SQL注入,数…...

深入了解Kubernetes(k8s):安装、使用和Java部署指南(持续更新中)
目录 Docker 和 k8s 简介1、kubernetes 组件及其联系1.1 Node1.2 Pod1.3 Service 2、安装docker3、单节点 kubernetes 和 KubeSphere 安装3.1 安装KubeKey3.2 安装 kubernetes 和 KubeSphere3.3 验证安装结果 4、集群版 kubernetes 和 KubeSphere 安装5、kubectl 常用命令6、资…...

Oracle的学习心得和知识总结(二十九)|Oracle数据库数据库回放功能之论文三翻译及学习
目录结构 注:提前言明 本文借鉴了以下博主、书籍或网站的内容,其列表如下: 1、参考书籍:《Oracle Database SQL Language Reference》 2、参考书籍:《PostgreSQL中文手册》 3、EDB Postgres Advanced Server User Gui…...

新版100句学完7000雅思单词
新版100句学完7000雅思单词 1. As the medical world continues to grapple with what’s acceptable and what’s not, it is clear that companies must continue to be heavily scrutinized for their sales and marketing strategies.(剑桥雅思6) 随着医学界持续努力解决…...

MATLAB图论合集(三)Dijkstra算法计算最短路径
本贴介绍最短路径的计算,实现方式为迪杰斯特拉算法;对于弗洛伊德算法,区别在于计算了所有结点之间的最短路径,考虑到MATLAB计算的便捷性,计算时只需要反复使用迪杰斯特拉即可,暂不介绍弗洛伊德的实现 迪杰斯…...

MySQL 8.0.xx 版本解决group by分组的问题
因为版本升级5.7版本以下是没有这个问题的,8.0版本以上会出现分组问题 1055 - Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column test1.sys_t.id which is not functionally dependent on columns in GROUP BY clause; t…...

设计模式—原型模式(Prototype)
目录 一、什么是原型模式? 二、原型模式具有什么优缺点吗? 三、有什么缺点? 四、什么时候用原型模式? 五、代码展示 ①、简历代码初步实现 ②、原型模式 ③、简历的原型实现 ④、深复制 ⑤、浅复制 一、什么是原型模式&…...

【pytorch】Unfold和Fold的互逆操作
1. 参数定义 Unfold https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold Fold https://pytorch.org/docs/stable/generated/torch.nn.Fold.html#torch.nn.Fold 注意:参数当中的padding是在四周边补零,而当fold后的尺寸…...

【AI】《动手学-深度学习-PyTorch版》笔记(二十一):目标检测
AI学习目录汇总 1、简述 通过前面的学习,已经了解了图像分类模型的原理及实现。图像分类是假定图像中只有一个目标,算法上是对整个图像做的分类。 下面我们来学习“目标检测”,即从一张图像中找出需要的目标,并标记出位置。 2、边界框 边界框:bounding box,就是一个方…...

畅捷通T+用户中locked勒索病毒后该怎么办?勒索病毒解密数据恢复
Locked勒索病毒是一种近年来在全球范围内引起广泛关注的网络安全威胁程序。它是一种加密货币劫持病毒,专门用于加密用户的数据并要求其支付赎金。Locked勒索病毒通过攻击各种系统漏洞和网络薄弱环节,使用户计算机受到感染并被加密锁定时,无法…...
神仙般的css动画参考网址,使用animate.css
Animate.css | A cross-browser library of CSS animations.Animate.css is a library of ready-to-use, cross-browser animations for you to use in your projects. Great for emphasis, home pages, sliders, and attention-guiding hints.https://animate.style/这里面有很…...

江西抚州新能源汽车3d扫描零部件逆向抄数测量改装-CASAIM中科广电
汽车改装除了在外观方面越来越受到消费者的青睐,在性能和实用性提升上面的需求也是日趋增多,能快速有效地对客户指定汽车零部件进行一个改装,是每一个汽车改装企业和工程师的追求,也是未来消费者个性化差异化的要求。下面CASAIM中…...

数据结构学习 --4 串
数据结构学习 --1 绪论 数据结构学习 --2 线性表 数据结构学习 --3 栈,队列和数组 数据结构学习 --4 串 数据结构学习 --5 树和二叉树 数据结构学习 --6 图 数据结构学习 --7 查找 数据结构学习 --8 排序 本人学习记录使用 希望对大家帮助 不当之处希望大家帮忙纠正…...

探索Kotlin K2编译器和Java编译器的功能和能力
文章首发地址 Kotlin K2编译器是Kotlin语言的编译器,负责将Kotlin源代码转换为Java字节码或者其他目标平台的代码。K2编译器是Kotlin语言的核心组件之一,它的主要功能是将Kotlin代码编译为可在JVM上运行的字节码。 K2编译器快速介绍 编译过程ÿ…...

如何安装chromadb
下载最新版本的python3.10 因为chromadb需要sqlite3的最小版本是3.35.0 使用如下命令安装 pip install chromadb 安装完毕后在python3的命令行窗口输入 import chromadb 如果不报错代表成功,如果报错sqlite3的最小版本是3.35.0,使用如下方式解决 …...

vue实现把字符串中的所有@内容,替换成带标签的
前言: 目前有个需求是,要把输入框里面的还有姓名高亮。 要求: 1、必须用 v-html ,带标签的给他渲染 2、把字符串中的全部查找出来,替换掉,注意要过滤已经替换好的,不然就是无限循环了 实现方法:…...

「MySQL-00」MySQL在Linux上的安装、登录与删除
目录 一、安装MySQL 0. 安装前请先执行一遍删除操作,把预装或残留的MySQL删除掉 1. 安装yum源 (解决了在哪里找MySQL的问题) 2. 安装哪个版本的MySQL 二、启动和登录MySQL 三、删除MySQL / MariaDB 安装与卸载前,建议先将用户切换…...

8月29-31日上课内容 第五章
第一章...

数据库导出工具
之前根据数据库升级需求,需要导出旧版本数据(sqlserver 6.5),利用c# winfrom写了一个小工具,导出数据。 →→→→→多了不说,少了不唠。进入正题→→→→ 连接数据库:输入数据库信息 连接成功…...

ChatGPT 制作可视化柱形图突出显示第1名与最后1名
对比分析柱形图的用法。在图表中显示最大值与最小值。 像这样的动态图表的展示只需要给ChatGPT,AIGC,OpenAI 发送一个指令就可以了, 人工智能会快速的写出HTML与JS代码来实现。 请使用HTML,JS,Echarts完成一个对比分析柱形图,在图表中突出显示第1名和最后1名用单独一种不…...

前端学习记录~2023.8.10~JavaScript重难点实例精讲~第6章 Ajax
第 6 章 Ajax 前言6.1 Ajax的基本原理及执行过程6.1.1 XMLHttpRequest对象(1)XMLHttpRequest对象的函数(2)XMLHttpRequest对象的属性 6.1.2 XMLHttpRequest对象生命周期(1)创建XMLHttpRequest对象ÿ…...

2023年Java核心技术第九篇(篇篇万字精讲)
目录 十七 . 并发相关基础概念 17.1 线程安全 17.2 保证线程安全的两个方法 17.2.1 封装 17.2.2 不可变 17.2.2.1 final 和 immutable解释 17.3 线程安全的基本特性 17.3.1 原子性(Atomicity) 17.3.2 可见性(Visibility) 17.3.2.1…...

C#上位机中的单例应用思考
文章目录 一、前言二、上位机单例应用场景2.1 上位机2.2 单例及其应用2.3 上位机中的应用2.3.1 用户登录信息2.3.2 配置文件2.3.3 数据连接池 2.4 一个应用场景的思考 三、总结 一、前言 之前写过一篇关于单例的文——C#中单例模式的实现,讲了讲单例是什么以及在C#…...

Python分享之redis
String 操作 redis中的String在在内存中按照一个name对应一个value来存储 set() #在Redis中设置值,默认不存在则创建,存在则修改 r.set(name, zhangsan) 参数: set(name, value, exNone, pxNone, nxFalse, xxFalse) exÿ…...

Linux常用命令——dd命令
在线Linux命令查询工具 dd 复制文件并对原文件的内容进行转换和格式化处理 补充说明 dd命令用于复制文件并对原文件的内容进行转换和格式化处理。dd命令功能很强大的,对于一些比较底层的问题,使用dd命令往往可以得到出人意料的效果。用的比较多的还是…...

DETR-《End-to-End Object Detection with Transformers》论文精读笔记
DETR(基于Transformer架构的目标检测方法开山之作) End-to-End Object Detection with Transformers 参考:跟着李沐学AI-DETR 论文精读【论文精读】 摘要 在摘要部分作者,主要说明了如下几点: DETR是一个端到端&am…...

网络流量监控-sniffnet
{alert type“info”} 今天来分享一个监控流量的应用sniffnet。 github项目地址:https://github.com/GyulyVGC/sniffnet {/alert} 可以在github的readme上看到这个程序有的特性: 为什么要介绍它呢:主要是多线程、跨平台、可靠、操作简单 我…...

验证go循环删除slice,map的操作和map delete操作不会释放底层内存的问题
目录 切片 for 循环删除切片元素其他循环中删除slice元素的方法方法1方法2(推荐)方法3 官方提供的方法结论 切片 for 循环删除map元素goalng map delete操作不会释放底层内存go map原理源码CRUD查询新增 操作注意事项map元素是无法取址的map是线程不安全…...

C++二级题2
数字字符求和 #include<iostream> #include<string.h> #include<stdio.h> #include<iomanip> #include<cmath> #include<bits/stdc.h> int a[2000][2000]; int b[2000]; char c[2000]; long long n; using namespace std; int main() {ci…...