TDengine函数大全-时序库特有函数
以下内容来自 TDengine 官方文档 及
GitHub 内容 。以下所有示例基于 TDengine 3.1.0.3
TDengine函数大全
1.数学函数
2.字符串函数
3.转换函数
4.时间和日期函数
5.聚合函数
6.选择函数
7.时序数据库特有函数
8.系统函数
时序库特有函数
- TDengine函数大全
- CSUM
- DERIVATIVE
- DIFF
- IRATE
- MAVG
- STATECOUNT
- STATEDURATION
- TWA
CSUM
CSUM(expr)
功能说明:累加和(Cumulative sum),输出行与输入行数相同。
返回结果类型: 输入列如果是整数类型返回值为长整型 (int64_t),浮点数返回值为双精度浮点数(Double)。无符号整数类型返回值为无符号长整型(uint64_t)。
适用数据类型:数值类型。
嵌套子查询支持: 适用于内层查询和外层查询。
适用于:表和超级表。
使用说明:
- 不支持 +、-、*、/ 运算,如 csum(col1) + csum(col2)。
- 只能与聚合(Aggregation)函数一起使用。 该函数可以应用在普通表和超级表上。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |> select csum(v1) from t7;csum(v1) |
========================1 |3 |6 |10 |15 |21 |28 |36 |45 |55 |65 |> select ts,csum(v1) from t7;ts | csum(v1) |
==================================================2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 3 |2023-08-01 01:01:03.000 | 6 |2023-08-01 01:01:04.000 | 10 |2023-08-01 01:01:05.000 | 15 |2023-08-01 01:01:06.000 | 21 |2023-08-01 01:01:07.000 | 28 |2023-08-01 01:01:08.000 | 36 |2023-08-01 01:01:09.000 | 45 |2023-08-01 01:01:10.000 | 55 |2023-08-01 01:01:12.000 | 65 |
DERIVATIVE
DERIVATIVE(expr, time_interval, ignore_negative)ignore_negative: {0| 1
}
功能说明:统计表中某列数值的单位变化率。其中单位时间区间的长度可以通过 time_interval 参数指定,最小可以是 1 秒(1s);ignore_negative 参数的值可以是 0 或 1,为 1 时表示忽略负值。
返回数据类型:DOUBLE。
适用数据类型:数值类型。
适用于:表和超级表。
使用说明:
- 可以与选择相关联的列一起使用。 例如: select _rowts, DERIVATIVE() from。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |
Query OK, 14 row(s) in set (0.001077s)taos> select _rowts,derivative(v1,1s,0) from t7;_rowts | derivative(v1,1s,0) |
======================================================2023-08-01 01:01:02.000 | 1.000000000000000 |2023-08-01 01:01:03.000 | 1.000000000000000 |2023-08-01 01:01:04.000 | 1.000000000000000 |2023-08-01 01:01:05.000 | 1.000000000000000 |2023-08-01 01:01:06.000 | 1.000000000000000 |2023-08-01 01:01:07.000 | 1.000000000000000 |2023-08-01 01:01:08.000 | 1.000000000000000 |2023-08-01 01:01:09.000 | 1.000000000000000 |2023-08-01 01:01:10.000 | 1.000000000000000 |2023-08-01 01:01:12.000 | 0.000000000000000 |2023-08-01 01:01:13.000 | -12.000000000000000 |
Query OK, 11 row(s) in set (0.001550s)taos> select _rowts,derivative(v1,1s,1) from t7;_rowts | derivative(v1,1s,1) |
======================================================2023-08-01 01:01:02.000 | 1.000000000000000 |2023-08-01 01:01:03.000 | 1.000000000000000 |2023-08-01 01:01:04.000 | 1.000000000000000 |2023-08-01 01:01:05.000 | 1.000000000000000 |2023-08-01 01:01:06.000 | 1.000000000000000 |2023-08-01 01:01:07.000 | 1.000000000000000 |2023-08-01 01:01:08.000 | 1.000000000000000 |2023-08-01 01:01:09.000 | 1.000000000000000 |2023-08-01 01:01:10.000 | 1.000000000000000 |2023-08-01 01:01:12.000 | 0.000000000000000 |
DIFF
DIFF(expr [, ignore_negative])ignore_negative: {0| 1
}
功能说明:统计表中某列的值与前一行对应值的差。 ignore_negative 取值为 0|1 , 可以不填,默认值为 0. 不忽略负值。ignore_negative 为 1 时表示忽略负数。
返回数据类型:同应用字段。
适用数据类型:数值类型。
适用于:表和超级表。
使用说明:
- 输出结果行数是范围内总行数减一,第一行没有结果输出。
- 可以与选择相关联的列一起使用。 例如: select _rowts, DIFF() from。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |> select _rowts,diff(v1) from t7;_rowts | diff(v1) |
==================================================1970-01-01 08:00:00.000 | NULL |2023-08-01 01:01:02.000 | 1 |2023-08-01 01:01:03.000 | 1 |2023-08-01 01:01:04.000 | 1 |2023-08-01 01:01:05.000 | 1 |2023-08-01 01:01:06.000 | 1 |2023-08-01 01:01:07.000 | 1 |2023-08-01 01:01:08.000 | 1 |2023-08-01 01:01:09.000 | 1 |2023-08-01 01:01:10.000 | 1 |1970-01-01 08:00:00.000 | NULL |2023-08-01 01:01:12.000 | 0 |2023-08-01 01:01:13.000 | -12 |> select _rowts,diff(v1,0) from t7;_rowts | diff(v1,0) |
==================================================6426-05-31 11:01:03.576 | NULL |2023-08-01 01:01:02.000 | 1 |2023-08-01 01:01:03.000 | 1 |2023-08-01 01:01:04.000 | 1 |2023-08-01 01:01:05.000 | 1 |2023-08-01 01:01:06.000 | 1 |2023-08-01 01:01:07.000 | 1 |2023-08-01 01:01:08.000 | 1 |2023-08-01 01:01:09.000 | 1 |2023-08-01 01:01:10.000 | 1 |2023-08-01 01:01:10.000 | NULL |2023-08-01 01:01:12.000 | 0 |2023-08-01 01:01:13.000 | -12 |> select _rowts,diff(v1,1) from t7;_rowts | diff(v1,1) |
==================================================1970-01-01 08:00:00.000 | NULL |2023-08-01 01:01:02.000 | 1 |2023-08-01 01:01:03.000 | 1 |2023-08-01 01:01:04.000 | 1 |2023-08-01 01:01:05.000 | 1 |2023-08-01 01:01:06.000 | 1 |2023-08-01 01:01:07.000 | 1 |2023-08-01 01:01:08.000 | 1 |2023-08-01 01:01:09.000 | 1 |2023-08-01 01:01:10.000 | 1 |1970-01-01 08:00:00.000 | NULL |2023-08-01 01:01:12.000 | 0 |2023-08-01 01:01:13.000 | NULL |
IRATE
IRATE(expr)
功能说明:计算瞬时增长率。使用时间区间中最后两个样本数据来计算瞬时增长速率;如果这两个值呈递减关系,那么只取最后一个数用于计算,而不是使用二者差值。
返回数据类型:DOUBLE。
适用数据类型:数值类型。
适用于:表和超级表。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |> select irate(v1) from t7 where ts>='2023-08-01 01:01:10.000' and ts<='2023-08-01 01:01:12.000';irate(v1) |
============================0.000000000000000 |> select irate(v1) from t7 where ts>='2023-08-01 01:01:01.000' and ts<='2023-08-01 01:01:04.000';irate(v1) |
============================1.000000000000000 |> select _wstart,irate(v1) from t7 interval(2s);_wstart | irate(v1) |
======================================================2023-08-01 01:01:00.000 | 0.000000000000000 |2023-08-01 01:01:02.000 | 1.000000000000000 |2023-08-01 01:01:04.000 | 1.000000000000000 |2023-08-01 01:01:06.000 | 1.000000000000000 |2023-08-01 01:01:08.000 | 1.000000000000000 |2023-08-01 01:01:10.000 | 0.000000000000000 |2023-08-01 01:01:12.000 | -2.000000000000000 |
MAVG
MAVG(expr, k)
功能说明: 计算连续 k 个值的移动平均数(moving average)。如果输入行数小于 k,则无结果输出。参数 k 的合法输入范围是 1≤ k ≤ 1000。
返回结果类型: DOUBLE。
适用数据类型: 数值类型。
嵌套子查询支持: 适用于内层查询和外层查询。
适用于:表和超级表。
使用说明:
- 不支持 +、-、*、/ 运算,如 mavg(col1, k1) + mavg(col2, k1);
- 只能与普通列,选择(Selection)、投影(Projection)函数一起使用,不能与聚合(Aggregation)函数一起使用;
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |> select ts,mavg(v1,2) from t7;ts | mavg(v1,2) |
======================================================2023-08-01 01:01:02.000 | 1.500000000000000 |2023-08-01 01:01:03.000 | 2.500000000000000 |2023-08-01 01:01:04.000 | 3.500000000000000 |2023-08-01 01:01:05.000 | 4.500000000000000 |2023-08-01 01:01:06.000 | 5.500000000000000 |2023-08-01 01:01:07.000 | 6.500000000000000 |2023-08-01 01:01:08.000 | 7.500000000000000 |2023-08-01 01:01:09.000 | 8.500000000000000 |2023-08-01 01:01:10.000 | 9.500000000000000 |2023-08-01 01:01:12.000 | 10.000000000000000 |2023-08-01 01:01:13.000 | 4.000000000000000 |> select ts,mavg(v1,4) from t7;ts | mavg(v1,4) |
======================================================2023-08-01 01:01:04.000 | 2.500000000000000 |2023-08-01 01:01:05.000 | 3.500000000000000 |2023-08-01 01:01:06.000 | 4.500000000000000 |2023-08-01 01:01:07.000 | 5.500000000000000 |2023-08-01 01:01:08.000 | 6.500000000000000 |2023-08-01 01:01:09.000 | 7.500000000000000 |2023-08-01 01:01:10.000 | 8.500000000000000 |2023-08-01 01:01:12.000 | 9.250000000000000 |2023-08-01 01:01:13.000 | 6.750000000000000 |
STATECOUNT
STATECOUNT(expr, oper, val)
功能说明:返回满足某个条件的连续记录的个数,结果作为新的一列追加在每行后面。条件根据参数计算,如果条件为 true 则加 1,条件为 false 则重置为-1,如果数据为 NULL,跳过该条数据。
参数范围:
- oper : “LT” (小于)、“GT”(大于)、“LE”(小于等于)、“GE”(大于等于)、“NE”(不等于)、“EQ”(等于),不区分大小写。
- val : 数值型
返回结果类型:INTEGER。
适用数据类型:数值类型。
嵌套子查询支持:不支持应用在子查询上。
适用于:表和超级表。
使用说明:
- 不能和窗口操作一起使用,例如 interval/state_window/session_window。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |> select ts,statecount(v1,'GT',5) from t7;ts | statecount(v1,'GT',5) |
==================================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | -1 |2023-08-01 01:01:02.000 | -1 |2023-08-01 01:01:03.000 | -1 |2023-08-01 01:01:04.000 | -1 |2023-08-01 01:01:05.000 | -1 |2023-08-01 01:01:06.000 | 1 |2023-08-01 01:01:07.000 | 2 |2023-08-01 01:01:08.000 | 3 |2023-08-01 01:01:09.000 | 4 |2023-08-01 01:01:10.000 | 5 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 6 |2023-08-01 01:01:13.000 | -1 |> select ts,statecount(v1,'GT',1) from t7;ts | statecount(v1,'GT',1) |
==================================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | -1 |2023-08-01 01:01:02.000 | 1 |2023-08-01 01:01:03.000 | 2 |2023-08-01 01:01:04.000 | 3 |2023-08-01 01:01:05.000 | 4 |2023-08-01 01:01:06.000 | 5 |2023-08-01 01:01:07.000 | 6 |2023-08-01 01:01:08.000 | 7 |2023-08-01 01:01:09.000 | 8 |2023-08-01 01:01:10.000 | 9 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -1 |
STATEDURATION
STATEDURATION(expr, oper, val, unit)
功能说明:返回满足某个条件的连续记录的时间长度,结果作为新的一列追加在每行后面。条件根据参数计算,如果条件为 true 则加上两个记录之间的时间长度(第一个满足条件的记录时间长度记为 0),条件为 false 则重置为-1,如果数据为 NULL,跳过该条数据。
参数范围:
- oper :
'LT'(小于)、'GT'(大于)、'LE'(小于等于)、'GE'(大于等于)、'NE'(不等于)、'EQ'(等于),不区分大小写,但需要用''包括。 - val : 数值型
- unit : 时间长度的单位,可取值时间单位: 1b(纳秒), 1u(微秒),1a(毫秒),1s(秒),1m(分),1h(小时),1d(天), 1w(周)。如果省略,默认为当前数据库精度。
返回结果类型:INTEGER。
适用数据类型:数值类型。
嵌套子查询支持:不支持应用在子查询上。
适用于:表和超级表。
使用说明:
- 不能和窗口操作一起使用,例如 interval/state_window/session_window。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |> select ts,stateduration(v1,'GT',5,1a) from t7;ts | stateduration(v1,'GT',5,1a) |
========================================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | -1 |2023-08-01 01:01:02.000 | -1 |2023-08-01 01:01:03.000 | -1 |2023-08-01 01:01:04.000 | -1 |2023-08-01 01:01:05.000 | -1 |2023-08-01 01:01:06.000 | 0 |2023-08-01 01:01:07.000 | 1000 |2023-08-01 01:01:08.000 | 2000 |2023-08-01 01:01:09.000 | 3000 |2023-08-01 01:01:10.000 | 4000 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 6000 |2023-08-01 01:01:13.000 | -1 |> select ts,stateduration(v1,'GT',5,1s) from t7;ts | stateduration(v1,'GT',5,1s) |
========================================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | -1 |2023-08-01 01:01:02.000 | -1 |2023-08-01 01:01:03.000 | -1 |2023-08-01 01:01:04.000 | -1 |2023-08-01 01:01:05.000 | -1 |2023-08-01 01:01:06.000 | 0 |2023-08-01 01:01:07.000 | 1 |2023-08-01 01:01:08.000 | 2 |2023-08-01 01:01:09.000 | 3 |2023-08-01 01:01:10.000 | 4 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 6 |2023-08-01 01:01:13.000 | -1 |> select ts,stateduration(v1,'GT',5,1m) from t7;ts | stateduration(v1,'GT',5,1m) |
========================================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | -1 |2023-08-01 01:01:02.000 | -1 |2023-08-01 01:01:03.000 | -1 |2023-08-01 01:01:04.000 | -1 |2023-08-01 01:01:05.000 | -1 |2023-08-01 01:01:06.000 | 0 |2023-08-01 01:01:07.000 | 0 |2023-08-01 01:01:08.000 | 0 |2023-08-01 01:01:09.000 | 0 |2023-08-01 01:01:10.000 | 0 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 0 |2023-08-01 01:01:13.000 | -1 |
TWA
TWA(expr)
功能说明:时间加权平均函数。统计表中某列在一段时间内的时间加权平均。
返回数据类型:DOUBLE。
适用数据类型:数值类型。
适用于:表和超级表。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |> select _wstart,twa(v1) from t7 interval(1s);_wstart | twa(v1) |
======================================================2023-08-01 01:01:00.000 | 0.000000000000000 |2023-08-01 01:01:01.000 | 1.499500000000000 |2023-08-01 01:01:02.000 | 2.499500000000000 |2023-08-01 01:01:03.000 | 3.499500000000000 |2023-08-01 01:01:04.000 | 4.499499999999999 |2023-08-01 01:01:05.000 | 5.499499999999999 |2023-08-01 01:01:06.000 | 6.499499999999999 |2023-08-01 01:01:07.000 | 7.499499999999999 |2023-08-01 01:01:08.000 | 8.499500000000001 |2023-08-01 01:01:09.000 | 9.499500000000001 |2023-08-01 01:01:10.000 | 5.005000000000000 |2023-08-01 01:01:11.000 | 0.000000000000000 |2023-08-01 01:01:12.000 | 4.006000976562500 |2023-08-01 01:01:13.000 | -2.000000000000000 |> select _wstart,twa(v1) from t7 interval(2s);_wstart | twa(v1) |
======================================================2023-08-01 01:01:00.000 | 1.499500000000000 |2023-08-01 01:01:02.000 | 2.999500000000000 |2023-08-01 01:01:04.000 | 4.999499999999999 |2023-08-01 01:01:06.000 | 6.999499999999999 |2023-08-01 01:01:08.000 | 8.999500000000001 |2023-08-01 01:01:10.000 | 9.995000000000001 |2023-08-01 01:01:12.000 | 3.999999511718750 |
相关文章:
TDengine函数大全-时序库特有函数
以下内容来自 TDengine 官方文档 及 GitHub 内容 。 以下所有示例基于 TDengine 3.1.0.3 TDengine函数大全 1.数学函数 2.字符串函数 3.转换函数 4.时间和日期函数 5.聚合函数 6.选择函数 7.时序数据库特有函数 8.系统函数 时序库特有函数 TDengine函数大全CSUMDERIVATIVEDIFF…...
vue-cli3项目本地启用https,并用mkcert生成证书
在项目根目录下的vue.config.js文件中: // vue.config.js module.exports {devServer: {host:dev.nm.cngc// 此处开启 https,并加载本地证书(否则浏览器左上角会提示不安全)https: {cert: fs.readFileSync(path.join(_dirname,./cert.crt)…...
包装类笔记
包装类 5.1 概述 Java 提供了两个类型系统,基本类型与引用类型,使用基本类型在于效率,然而很多情况,会创建对象使用,因为对象可以做更多的功能,如果想要我们的基本类型像对象一样操作,就可以使…...
TC和TG油封有什么区别?
油封是各种机械系统(包括发动机和工业机械)中的重要部件,因为它们可以防止润滑剂和污染物的泄漏。在可用的不同类型的油封中,常用的是TC和TG密封件。在本文中,我们将讨论TC和TG油封之间的差异,帮助您了解它们的独特特性和应用。 …...
大数据之MapReduce
MapReduce概述 是一个分布式的编程框架,MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。 优点: 易于编程,简单的实现一些接口,就可以完成一…...
《机器人学一(Robotics(1))》_台大林沛群 第 5 周【机械手臂 轨迹规划】 Quiz 5
我又行了!🤣 求解的 位置 可能会有 变动,根据求得的A填写相应值即可。注意看题目。 coursera链接 文章目录 第1题 Cartesian space求解 题1-3 的 Python 代码 第2题第3题第4题 Joint space求解 题4-6 的 Python 代码 第5题第6题其它可参考代…...
嵌入式面试/笔试C相关总结
1、存储 单片机端编译后分为code ro rw zi几个区域,其中code是执行文件,ro(read only)只读区域,存放const修饰常量、字符串。rw(read write)存放已初始化变量。zi存放未初始化变量。编译完成后bin大小为coderorw。运行时所需内存为rwzi。 在电…...
支付宝使用OceanBase的历史库实践分享
为解决因业务增长引发的数据库存储空间问题,支付宝基于 OceanBase 数据库启动了历史库项目,通过历史数据归档、过期数据清理、异常数据回滚,实现了总成本降低 80%。 历史数据归档:将在线库(SSD 磁盘)数据归…...
accelerate 分布式技巧(一)
accelerate分布式技巧 简单使用 Accelerate是一个来自Hugging Face的库,它简化了将单个GPU的PyTorch代码转换为单个或多台机器上的多个GPU的代码。 Accelerate精确地抽象了与多GPU/TPU/fp16相关的模板代码,并保持Pytorch其余代码不变。 import torchim…...
密码找回安全
文章目录 密码找回安全任意秘密重置 密码找回安全 用户提交修改密码请求;账号认证:服务器发送唯一ID (例如信验证码)只有账户所有者才能看的地方,完成身份验证;身份验证:用户提交验证码完成身份验证;修改密码:用户修改密码。 任意秘密重置 登录metinfo4…...
Spring Boot + Vue的网上商城之商品管理
Spring Boot Vue的网上商城之商品管理 在网上商城中,商品管理是一个非常重要的功能。它涉及到商品的添加、编辑、删除和展示等操作。本文将介绍如何使用Spring Boot和Vue来实现一个简单的商品管理系统。 下面是一个实现Spring Boot Vue的网上商城之商品管理的思路…...
B站:提高你的词汇量:如何用英语谈论驾驶
视频链接:提高你的词汇量:如何用英语谈论驾驶_哔哩哔哩_bilibili 英文音标中文hood/hʊd/n. 汽车的引擎盖go over仔细检查;认真讨论;用心思考There are plenty of videos go over this.有很多关于这个的视频unlockvt. 发现;揭开&…...
大前端面试注意要点
前端面试:从IT专家角度全面解析 在数字时代,前端开发工程师的角色变得越来越重要。随着网站和应用程序的复杂性和交互性越来越高,对具有专业技能的前端开发人员的需求也在不断增长。对于正在寻找前端开发职位的开发者,或者正在寻…...
稻盛和夫-如是说(读书笔记)
本书解答的核心问题: “今天,我们需要的不是短期有效的处方。作为人,何谓正确?作为人,应该如何度过人生?这才是一切问题的根源。 有几个要点和认知比较深的地方谈一谈。 1、利他 类似于阳明心学࿰…...
Jmeter是用来做什么的?
JMeter是一个开源的Java应用,主要用于性能测试和功能测试。它最初由Apache软件基金会设计用于测试Web应用程序,但现在已经扩展到其他测试功能。JMeter的主要功能如下: 性能测试:性能测试是JMeter的核心功能,主要分为两…...
Docker基础教程
Docker基础教程 Docker简介 Docker基本操作 Docker应用 Docker自定义镜像 Docker compose 为什么使用DockerDocker简介安装DockerDocker的中央仓库Docker镜像操作Docker容器操作准备一个web项目创建MySQL容器创建Tomcat容器将项目部署到TomcatDocker数据卷DockerfileDock…...
Linux命令200例:who用于显示当前登录到系统的用户信息
🏆作者简介,黑夜开发者,CSDN领军人物,全栈领域优质创作者✌。CSDN专家博主,阿里云社区专家博主,2023年6月csdn上海赛道top4。 🏆数年电商行业从业经验,历任核心研发工程师࿰…...
HGDB-修改分区表名称及键值
瀚高数据库 目录 环境 文档用途 详细信息 环境 系统平台:N/A 版本:4.5.7 文档用途 使用存储过程拼接SQL,修改分区名称、分区键值、并重新加入主表,适用于分区表较多场景。 详细信息 说明:本文档为测试过程࿱…...
1分钟了解音频、语音数据和自然语言处理的关系
机器学习在日常场景中的应用 音频、语音数据和自然语言处理这三者正在不断促进人工智能技术的发展,人机交互也逐渐渗透进生活的每个角落。在各行各业包括零售业、银行、食品配送服务商)的多样互动中,我们都能通过与某种形式的AI(…...
线性代数的学习和整理20,关于向量/矩阵和正交相关,相似矩阵等
目录 1 什么是正交 1.1 正交相关名词 1.2 正交的定义 1.3 正交向量 1.4 正交基 1.5 正交矩阵的特点 1.6 正交矩阵的用处 1 什么是正交 1.1 正交相关名词 orthogonal set 正交向量组正交变换orthogonal matrix 正交矩阵orthogonal basis 正交基orthogonal decompositio…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...
