机器学习基础算法--回归类型和评价分析
目录
1.数据归一化处理
2.数据标准化处理
3.Lasso回归模型
4.岭回归模型
5.评价指标计算
1.数据归一化处理
"""
x的归一化的方法还是比较多的我们就选取最为基本的归一化方法
x'=(x-x_min)/(x_max-x_min)
"""
import numpy as np
from sklearn.preprocessing import MinMaxScaler
rd = np.random.RandomState(1614)
X =rd.randint(0, 20, (5, 5))
scaler = MinMaxScaler()#归一化
# 对数据进行归一化
X_normalized = scaler.fit_transform(X)
X_normalized

2.数据标准化处理
"""
标准化的方法x'=(x-u)/(标准差)
"""
import numpy as np
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
rd = np.random.RandomState(1614)
X =rd.randint(0, 20, (5, 5))#X时特征数据
# 创建StandardScaler对象(标准化)
scaler = StandardScaler()
X_standardized = scaler.fit_transform(X)
X_standardized
3.Lasso回归模型
"""
lasso回归
"""
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import Lasso
# 从Excel读取数据
dataframe = pd.read_excel('LinearRegression.xlsx')
data=np.array(dataframe)
X=data[:,0].reshape(-1,1)
Y=data[:,1]
# 创建Lasso回归模型
lambda_ = 0.1 # 正则化强度
lasso_reg = Lasso(alpha=lambda_)
# 拟合回归模型
lasso_reg.fit(X, y)
# 计算回归系数
coefficients = np.append(lasso_reg.coef_,lasso_reg.intercept_)
# 绘制散点图和拟合曲线
plt.figure(figsize=(8,6), dpi=500)
plt.scatter(X, y, marker='.', color='b',label='Data Points',s=64)
plt.plot(X, lasso_reg.predict(X), color='r', label='Lasso Regression')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Lasso Regression')
plt.legend()
plt.text(x=-0.38,y=60,color='r',s="Lasso Regression Coefficients:{}".format( coefficients))
plt.savefig(r'C:\Users\Zeng Zhong Yan\Desktop\Lasso Regression.png')
plt.show()
4.岭回归模型
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import Ridge# 从Excel读取数据
dataframe = pd.read_excel('LinearRegression.xlsx')
data=np.array(dataframe)
X=data[:,0].reshape(-1,1)
Y=data[:,1]
#创建岭回归模型
lambda_ = 0.1 # 正则化强度
ridge_reg = Ridge(alpha=lambda_)
#拟合岭回归模型并且计算回归系数
ridge_reg.fit(X, y)
coefficients = np.append(ridge_reg.coef_,ridge_reg.intercept_)
#绘制可视化图
plt.figure(figsize=(8, 6), dpi=500)
plt.scatter(X, y, marker='.', color='b',label='Data Points',s=64)
plt.plot(X, ridge_reg.predict(X), color='r', label='Ridge Regression')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ridge Regression')
plt.legend()
plt.text(x=-0.38,y=60,color='r',s="Ridge Regression Coefficients:{}".format(coefficients))
plt.savefig(r'C:\Users\Zeng Zhong Yan\Desktop\Ridge Regression.png')
plt.show()

5.评价指标计算
MSE=i=1n(Yi-Y^)2nRMES=i=1n(Yi-Y^)2nMAE=i=1n|Yi-Y^|nR2=1-i=1n(Y^-Yi)2i=1n(Y¯-Yi)2

#4种误差评价指标
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
# 预测值
y_pred = ridge_reg.predict(X)
# 计算均方误差(MSE)
MSE = mean_squared_error(y, y_pred)
# 计算均方根误差(RMSE)
RMSE= np.sqrt(mse)
# 计算平均绝对误差(MAE)
MAE= mean_absolute_error(y, y_pred)
# 计算 R 方(决定系数)
R_squre = r2_score(y, y_pred)
print("均方误差:", MSE )
print("均方根误差:", RMSE)
print("平均绝对误差:", MAE)
print("R方误差系数:", R_squre)

相关文章:
机器学习基础算法--回归类型和评价分析
目录 1.数据归一化处理 2.数据标准化处理 3.Lasso回归模型 4.岭回归模型 5.评价指标计算 1.数据归一化处理 """ x的归一化的方法还是比较多的我们就选取最为基本的归一化方法 x(x-x_min)/(x_max-x_min) """ import numpy as np from sklea…...
MATLAB 软件功能简介
MATLAB 的名称源自 Matrix Laboratory,1984 年由美国 Mathworks 公司推向市场。 它是一种科学计算软件,专门以矩阵的形式处理数据。MATLAB 将高性能的数值计算和可 视化集成在一起,并提供了大量的内置函数,从而被广泛的应用于科学计算、控制…...
deepfm内容理解
对于CTR问题,被证明的最有效的提升任务表现的策略是特征组合(Feature Interaction); 两个问题: 如何更好地学习特征组合,进而更加精确地描述数据的特点; 如何更高效的学习特征组合。 DNN局限 :当我们使…...
postgresql-集合运算
postgresql-集合运算 并集交集差集集合运算符的优先级 并集 create table excellent_emp( year int not null, emp_id integer not null, constraint pk_excellent_emp primary key(year,emp_id) );insert into excellent_emp values(2018,9); insert into excellent_emp value…...
[持续更新]计算机经典面试题基础篇Day2
[通用]计算机经典面试题基础篇Day2 1、单例模式是什么,线程安全吗 单例模式是一种设计模式,旨在确保一个类只有一个实例,并提供全局访问点。通过使用单例模式,可以避免多次创建相同的对象,节省内存资源,同…...
C++:类和对象(二)
本文主要介绍:构造函数、析构函数、拷贝构造函数、赋值运算符重载、const成员函数、取地址及const取地址操作符重载。 目录 一、类的六个默认成员函数 二、构造函数 1.概念 2.特性 三、析构函数 1.概念 2.特性 四、拷贝构造函数 1.概念 2.特征 五、赋值…...
Java“牵手”京东商品详情数据,京东商品详情API接口,京东API接口申请指南
京东平台商品详情接口是开放平台提供的一种API接口,通过调用API接口,开发者可以获取京东商品的标题、价格、库存、月销量、总销量、库存、详情描述、图片等详细信息 。 获取商品详情接口API是一种用于获取电商平台上商品详情数据的接口,通过…...
Fluidd摄像头公网无法正常显示修复一例
Fluidd摄像头在内网正常显示,公网一直无法显示,经过排查发现由于url加了端口号引起的,摄像头url中正常填写的是/webcam?actionsnapshot,或者/webcam?actionstream。但是由于nginx跳转机制,会被301跳转到/webcam/?ac…...
【C++ 学习 ⑳】- 详解二叉搜索树
目录 一、概念 二、实现 2.1 - BST.h 2.2 - test.cpp 三、应用 四、性能分析 一、概念 二叉搜索树(BST,Binary Search Tree),又称二叉排序树或二叉查找树。 二叉搜索树是一棵二叉树,可以为空;如果不…...
Java中网络的基本介绍。网络通信,网络,ip地址,域名,端口,网络通信协议,TCP/IP传输过程,网络通信协议模型,TCP协议,UDP协议
- 网络通信 概念:网络通信是指通过计算机网络进行信息传输的过程,包括数据传输、语音通话、视频会议等。在网络通信中,数据被分成一系列的数据包,并通过网络传输到目的地。在数据传输过程中,需要确保数据的完整性、准…...
【Qt】总体把握文本编码问题
在项目开发中,经常会遇到文本编码问题。文本编码知识非常基础,但对于新手来说,可能需要花费较长的时间去尝试,才能在脑海中建立对编码的正确认知。文本编码原理并不难,难的是在项目实践中掌握正确处理文本编码的方法。…...
Linux命令(77)之curl
linux命令之curl 1.curl介绍 linux命令之curl是一款强大的http命令行工具,它支持文件的上传和下载,是综合传输工具。 2.curl用法 curl [参数] [url] curl参数 参数说明-C断点续传-o <filename>把输出写到filename文件中-x在给定的端口上使用HT…...
详解 sudo usermod -aG docker majn
这个命令涉及到几个 Linux 系统管理的基础概念,包括 sudo、usermod 和用户组管理。我们可以逐一地解析它们: sudo: sudo(superuser do)允许一个已经被授权的用户以超级用户或其他用户的身份执行一个命令。当使用 sudo 前缀一个命令…...
大数据课程L2——网站流量项目的算法分析数据处理
文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解网站流量项目的算法分析; ⚪ 了解网站流量项目的数据处理; 一、项目的算法分析 1. 概述 网站流量统计是改进网站服务的重要手段之一,通过获取用户在网站的行为,可以分析出哪些内…...
jar包或exe程序设置为windows服务
最近在使用java和python制作客户端时突发奇想,是否能够通过一种方法来讲jar包和exe程序打包成windows服务呢?简单了解了一下是可以的。 首先要用到的是winSW,制作windows服务的过程非常简单,仅需几步制作完成,也不需要…...
数据结构--- 树
(一)知识补充 定义 树是一种数据结构,它是由n(n≥0)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 它具有以下的特点: 每个节点有零个或多个子节点; 没有父节点的节点称为根节点;每一个非根…...
两个pdf文件合并为一个怎么操作?分享pdf合并操作步骤
不管是初入职场的小白,还是久经职场的高手,都必须深入了解pdf,特别是关于pdf的各种操作,如编辑、合并、压缩等操作,其中合并是这么多操作里面必需懂的技能之一,但是很多人还是不知道两个pdf文件合并为一个怎…...
Zookeeper简述
数新网络-让每个人享受数据的价值 官网现已全新升级—欢迎访问! 前 言 ZooKeeper是一个开源的、高可用的、分布式的协调服务,由Apache软件基金会维护。它旨在帮助管理和协调分布式系统和应用程序,提供了一个可靠的平台,用于处理…...
1、Flutter移动端App实战教程【环境配置、模拟器配置】
一、概述 Flutter是Google用以帮助开发者在IOS和Android 两个平台开发高质量原生UI的移动SDK,一份代码可以同时生成IOS和Android两个高性能、高保真的应用程序。 二、渲染机制 之所以说Flutter能够达到可以媲美甚至超越原生的体验,主要在于其拥有高性…...
stride与padding对输出尺寸的计算
公式: 练习: 图1: input4,filter3,padding0,stride1 output2 图2: input5,filter3,padding0,stride2 output2 图3: input6,filter3&am…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统
Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...
2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案
一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...
