当前位置: 首页 > news >正文

代码随想录算法训练营day45|70. 爬楼梯(进阶版)|322. 零钱兑换|279.完全平方数

70. 爬楼梯(进阶版)

一步一个台阶,两个台阶,三个台阶,…,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?

1阶,2阶,… m阶就是物品,楼顶就是背包。

每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。

问跳到楼顶有几种方法其实就是问装满背包有几种方法。 求的是排列

class Solution {public int climbStairs(int n) {int[] dp = new int[n + 1];int m = 2; //m表示最多可以爬m个台阶dp[0] = 1;for (int i = 1; i <= n; i++) { // 遍历背包for (int j = 1; j <= m; j++) { //遍历物品if (i >= j)  //當前的背包容量 大於 物品重量的時候,我們才需要記錄當前的這個裝得方法(方法數+)dp[i] += dp[i - j];}}return dp[n];}
}

322. 零钱兑换

力扣题目链接

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

你可以认为每种硬币的数量是无限的。

示例 1:

  • 输入:coins = [1, 2, 5], amount = 11
  • 输出:3
  • 解释:11 = 5 + 5 + 1

示例 2:

  • 输入:coins = [2], amount = 3
  • 输出:-1

示例 3:

  • 输入:coins = [1], amount = 0
  • 输出:0

示例 4:

  • 输入:coins = [1], amount = 1
  • 输出:1

示例 5:

  • 输入:coins = [1], amount = 2
  • 输出:2

提示:

  • 1 <= coins.length <= 12

  • 1 <= coins[i] <= 2^31 - 1

  • 0 <= amount <= 10^4

  • 动规五部曲

1.确定dp数组以及下标的含义

背包容量: 目标值

硬币:物品

问:装满这个背包,最少用多少件物品

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

2.确定递推公式

Math.min

dp[j]=Math.min(dp[j],dp[j-coins[i]]+1)

3.初始化

首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

其他下标对应的数值呢?

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在Math.min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

//初始化dp数组为最大值for (int j = 0; j < dp.length; j++) {dp[j] = Integer.MAX_VALUE;}

4.遍历顺序求

求最小的元素数量 ,不影响 都可以

5.打印dp数组

以输入:coins = [1, 2, 5], amount = 5为例

322.零钱兑换

代码:

class Solution {public int coinChange(int[] coins, int amount) {int[] dp=new int[amount+1];//初始化 其他下标  因为要求最小所以不能赋值为0  会被覆盖for (int j = 0; j < dp.length; j++) {dp[j] = Integer.MAX_VALUE;}dp[0]=0;for(int i=0;i<coins.length;i++){  //遍历物品for(int j=coins[i];j<=amount;j++){  //遍历背包if(dp[j - coins[i]] != Integer.MAX_VALUE){// 如果dp[j - coins[i]]是初始值则跳过dp[j]=Math.min(dp[j],dp[j-coins[i]]+1);}}}return dp[amount]==Integer.MAX_VALUE?-1:dp[amount];}
}

279.完全平方数

力扣题目链接

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

  • 输入:n = 12
  • 输出:3
  • 解释:12 = 4 + 4 + 4

示例 2:

  • 输入:n = 13
  • 输出:2
  • 解释:13 = 4 + 9

提示:

  • 1 <= n <= 10^4

  • 动态规划五部曲

1.确定dp数组的含义

背包容量: 整数n

物品:完全平方数 i*i

问题:给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

dp[j]: 和为j时,完全平方数最少的数量为dp[j]

2.确定递推公式

dp[j]=Math.min(dp[j],dp[j-i*i]+1)

每个元素的数值用i*i表示

3.初始化

首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

其他下标对应的数值呢?

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在Math.min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

//初始化dp数组为最大值for (int j = 0; j < dp.length; j++) {dp[j] = Integer.MAX_VALUE;}

4.遍历顺序求

求最小的元素数量,不影响

5.打印dp数组

已输入n为5例,dp状态图如下:

279.完全平方数

dp[0] = 0 dp[1] = min(dp[0] + 1) = 1 dp[2] = min(dp[1] + 1) = 2 dp[3] = min(dp[2] + 1) = 3 dp[4] = min(dp[3] + 1, dp[0] + 1) = 1 dp[5] = min(dp[4] + 1, dp[1] + 1) = 2

最后的dp[n]为最终结果。

代码:

class Solution {public int numSquares(int n) {int[] dp=new int[n+1];for(int j=0;j<=n;j++){dp[j]=Integer.MAX_VALUE;}dp[0]=0;for(int i=1;i*i<=n;i++){  //遍历物品for(int j=i*i;j<=n;j++){   //遍历背包  背包从物品大小开始dp[j]=Math.min(dp[j],dp[j-i*i]+1);  //为了下标不出现负数}}return dp[n];}
}

相关文章:

代码随想录算法训练营day45|70. 爬楼梯(进阶版)|322. 零钱兑换|279.完全平方数

70. 爬楼梯(进阶版) 一步一个台阶&#xff0c;两个台阶&#xff0c;三个台阶&#xff0c;…&#xff0c;直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢&#xff1f; 1阶&#xff0c;2阶&#xff0c;… m阶就是物品&#xff0c;楼顶就是背包。 每一阶可以重复使用&#…...

数据结构和算法(3):列表

列表是一种线性数据结构&#xff0c;它允许在其中存储多个元素&#xff0c;并且可以动态地添加或删除元素。 循秩访问 可通过重载下标操作符&#xff0c;实现寻秩访问 template <typename T> // assert: 0 < r < size T List<T>::operator[](Rank r) cons…...

使用playright自动下载vscode已安装插件

import os import re import subprocess import traceback from playwright.sync_api import Playwright, sync_playwright, expect# 执行CMD命令 cmd_command "code --list-extensions" # 获取已安装扩展列表 process subprocess.Popen(cmd_command, stdoutsubpr…...

单片机语言实例:2、点亮数码管的多种方法

一、共阳数码管静态显示 程序实例1&#xff1a; #include<reg52.h> //包含头文件&#xff0c;一般情况不需要改动&#xff0c; //头文件包含特殊功能寄存器的定义void main (void) {P10xc0; //二进制 为 1100 0000 参考数码管排列&#xff0c;//可以得出0对应的段点…...

C#学习 - 初识类与名称空间

类&#xff08;class&#xff09;& 名称空间&#xff08;namespace&#xff09; 类是最基础的 C# 类型&#xff0c;是一个数据结构&#xff0c;是构成程序的主体 名称空间以树型结构组织类 using System; //前面的using就是引用名称空间 //相当于C语言的 #include <..…...

Python爬取电影信息:Ajax介绍、爬取案例实战 + MongoDB存储

Ajax介绍 Ajax&#xff08;Asynchronous JavaScript and XML&#xff09;是一种用于在Web应用程序中实现异步通信的技术。它允许在不刷新整个网页的情况下&#xff0c;通过在后台与服务器进行数据交换&#xff0c;实时更新网页的一部分。Ajax的主要特点包括&#xff1a; 异步通…...

JavaScript的面向对象

一、认识对象 1.概述 对象&#xff08;object&#xff09;是 JavaScript 语言的核心概念&#xff0c;也是最重要的数据类型。 什么是对象&#xff1f;简单说&#xff0c;对象就是一组“键值对”&#xff08;key-value&#xff09;的集合&#xff0c;是一种无序的复合数据集合…...

MybatisPlus 核心功能 条件构造器 自定义SQL Service接口 静态工具

MybatisPlus 快速入门 常见注解 配置_软工菜鸡的博客-CSDN博客 2.核心功能 刚才的案例中都是以id为条件的简单CRUD&#xff0c;一些复杂条件的SQL语句就要用到一些更高级的功能了。 2.1.条件构造器 除了新增以外&#xff0c;修改、删除、查询的SQL语句都需要指定where条件。因此…...

TSN时间敏感网络

目录 时间敏感网络介绍 子协议介绍 时间同步 IEEE802.1AS 调度和流量整形 IEEE802.1Q IEEE802.1Qbv IEEE802.1cr IEEE802.1Qbu IEEE802.1Qch IEEE802.1Qav IEEE802.1Qcc 纠错机制与安全 IEEE802.1Qci IEEE802.1CB IEEE802.1Qca 参考 时间敏感网络介绍 TSN(Tim…...

【2023年数学建模国赛】C题解题思路

第一问 要求分析分析蔬菜各品类及单品销售量的分布规律及相互关系。该问题可以拆分成三个角度进行剖析。 1&#xff09;各种类蔬菜的销售量分布、蔬菜种类与销售量之间的关系&#xff1b;2&#xff09;各种类蔬菜的销售量的月份分布、各种类蔬菜销售量与月份之间的相关关系&a…...

5分钟 将“.py”文件转为“.pyd”文件

代码&#xff1a; from distutils.core import setup from distutils.extension import Extension from Cython.Build import cythonize import osfile_list os.listdir("./") extensions [] for file in file_list:if file.endswith(".py") and file !…...

python 入门到精通(一)

文章目录 1.使用pycharm进行第一个程序的编写2.python基础语法篇2.1 常用的值类型2.2 注释2.3 变量2.4 数据类型2.5 数据类型转换2.6 什么是标识符2.7 运算符2.8 字符串扩展2.8.1 字符串拼接2.8.2 字符串格式化2.8.3 格式化的精度控制2.8.4 字符串格式化 - 快速写法2.8.5 字符串…...

AJAX (Asynchronous JavaScript And XML)异步的JavaScript 和 XML

1、概念 Asynchronous JavaScript And XML 异步的JavaScript 和 XML异步和同步&#xff1a;客户端和服务器端相互通信的基础上 同步&#xff1a;客户端必须等待服务端的响应。在等待的期间客户端不能做其他操作。异步&#xff1a;客户端不需要等待服务器端的响应。在服务器…...

华为云云耀云服务器L实例评测|安装Java8环境 配置环境变量 spring项目部署 【!】存在问题未解决

目录 引出安装JDK8环境查看是否有默认jar上传Linux版本的jar包解压压缩包配置环境变量 上传jar包以及运行问题上传Jar包运行控制台开放端口访问失败—见问题记录关闭Jar的方式1.进程kill -92.ctrl c退出 问题记录&#xff1a;【!】未解决各种方式查看端口情况联系工程师最后排查…...

安卓多渠道打包(五)360加固walle多渠道打包

背景&#xff1a; 1、360加固宝&#xff0c;签名收費了&#xff0c;脚本上传加固也针对特定帐号才可实现。 内容 本文将会分享安卓项目中&#xff0c;使用360加固&#xff0c;再用walle签名&#xff0c;产出多渠道加固包的全流程。 环境 win10 jdk11 as2022 gradle7.5 最…...

Jmeter 实现 mqtt 协议压力测试

1. 下载jmeter&#xff0c;解压 https://jmeter.apache.org/download_jmeter.cgi 以 5.4.3 为例&#xff0c;下载地址&#xff1a; https://dlcdn.apache.org//jmeter/binaries/apache-jmeter-5.4.3.zip linux下解压&#xff1a; unzip apache-jmeter-5.4.3.zip 2. 下载m…...

蓝桥杯官网练习题(凑算式)

类似填空题&#xff1a; ①算式900&#xff1a; https://blog.csdn.net/s44Sc21/article/details/132746513?spm1001.2014.3001.5501https://blog.csdn.net/s44Sc21/article/details/132746513?spm1001.2014.3001.5501 ②九宫幻方③七星填数④幻方填空&#xff1a;https:/…...

机器学习实战-系列教程5:手撕线性回归4之非线性回归(项目实战、原理解读、源码解读)

&#x1f308;&#x1f308;&#x1f308;机器学习 实战系列 总目录 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 手撕线性回归1之线性回归类的实现 手撕线性回归2之单特征线性回归 手撕线性回归3之多特征线性回归 手撕线性回归4之非线性回归 1…...

【C语言基础】那些你可能不知道的C语言“潜规则”

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…...

android framework之Applicataion启动流程分析(三)

现在再回顾一下Application的启动流程&#xff0c;总的来说&#xff0c;虽然进程的发起是由ATMS服务发起的&#xff0c;但是进程的启动还是由AMS负责&#xff0c;所以需要调用AMS的startProcess()接口完成进程启动流程&#xff0c;AMS要处理的事情很多&#xff0c;它将事务交给…...

使用Scrapy框架集成Selenium实现高效爬虫

引言&#xff1a; 在网络爬虫的开发中&#xff0c;有时候我们需要处理一些JavaScript动态生成的内容或进行一些复杂的操作&#xff0c;这时候传统的基于请求和响应的爬虫框架就显得力不从心了。为了解决这个问题&#xff0c;我们可以使用Scrapy框架集成Selenium来实现高效的爬…...

Maven 和 Gradle 官方文档及相关资料的网址集合

文章目录 官方MavenGradle 笔者MavenGradle 官方 Maven Maven 仓库依赖包官方查询通道&#xff1a;https://mvnrepository.com/ Maven 插件官方文档&#xff1a;https://maven.apache.org/plugins/ 安卓依赖包官方查询通道*&#xff1a;https://maven.google.com/web/ Gra…...

docker概念、安装与卸载

第一章 docker概念 Docker 是一个开源的应用容器引擎。 Docker 诞生于2013年初&#xff0c;基于 Go 语言实现&#xff0c;dotCloud 公司出品&#xff0c;后改名为 Docker Inc。 Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中&#xff0c;然后发…...

elasticsearch访问9200端口 提示需要登陆

项目场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; elasticsearch访问9200端口 提示需要登陆 问题描述 提示&#xff1a;这里描述项目中遇到的问题&#xff1a; 在E:\elasticsearch-8.9.1-windows-x86_64\elasticsearch-8.9.1\bin目录下输入命令 ela…...

【深度学习】 Python 和 NumPy 系列教程(一):Python基本数据类型:1、数字(整数、浮点数)及相关运算;2、布尔值

目录 一、前言 二、实验环境 三、Python基本数据类型 1. 数字 a. 整数&#xff08;int&#xff09; b. 浮点数&#xff08;float&#xff09; c. 运算 运算符 增强操作符 代码整合 d. 运算中的类型转换 e. 运算函数abs、max、min、int、float 2. 布尔值&#xff08…...

无swing,高级javaSE毕业之贪吃蛇游戏(含模块构建,多线程监听服务)

JavaSE&#xff0c;无框架实现贪吃蛇 文章目录 JavaSE&#xff0c;无框架实现贪吃蛇1.整体思考2.可能的难点思考2.1 如何表示游戏界面2.2 如何渲染游戏界面2.3 如何让游戏动起来2.4 蛇如何移动 3.流程图制作4.模块划分5.模块完善5.0常量优化5.1监听键盘服务i.输入存储ii.键盘监…...

HDD-FAT32 ZIP-FAT32 HDD-FAT16 ZIP-FAT16 HDD-NTFS

FAT32、FAT16指的是分区格式&#xff0c; FAT16单个文件最大2G FAT32单个文件最大4G NTFS单个文件大于4G HDD是硬盘启动 ZIP是软盘启动 U盘选HDD HDD-NTFS...

王道数据结构编程题 二叉树

二叉树定义 以下为本文解题代码的二叉树定义。 struct TreeNode {int val;TreeNode* left, *right;TreeNode(int val 0, TreeNode* left nullptr, TreeNode* right nullptr): val(val), left(left), right(right) {} };非递归后序遍历 题目描述 编写后序遍历二叉树的非递…...

登录怎么实现的,密码加密了嘛?使用明文还是暗文,知道怎么加密嘛?

在Java中登录功能的实现通常包括以下步骤&#xff0c;其中密码应该以加密形式存储在数据库中&#xff0c;而不以明文形式存储&#xff0c;以增强安全性&#xff1a; 登录功能的实现步骤&#xff1a; 用户输入&#xff1a; 用户在登录页面上输入用户名和密码。 传输到服务器&a…...

Nginx和Tomcat负载均衡实现session共享

以前的项目使用Nginx作为反向代理实现了多个Tomcat的负载均衡&#xff0c;为了实现多个Tomcat之间的session共享&#xff0c;使用了开源的Memcached-Session-Manager框架。 此框架的优势&#xff1a; 1、支持Tomcat6和Tomcat7 2、操作粘性或不黏性Session 3、没有单点故障 4、T…...

做deal网站/宁波网站推广怎么做

Spring Security网络上很多前后端分离的示例很多都不是完全的前后分离&#xff0c;而且大家实现的方式各不相同&#xff0c;有的是靠自己写拦截器去自己校验权限的&#xff0c;有的页面是使用themleaf来实现的不是真正的前后分离&#xff0c;看的越多对Spring Security越来越疑…...

wordpress图片上传路径/百度关键词排名突然没了

【题目描述】求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数&#xff1f;为此他特别数了一下1~13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现…...

中国建设网网站/网站优化教程

前言&#xff1a; 如果你是想转行做Java又或者你是计算机类的学生想往Java发展&#xff0c;我“墙裂”建议你看完这份良心建议。 首先&#xff0c;我认为你需要对自己以及行业情况有一定认知&#xff1a; 1、你的性格适不适合做这一行&#xff1f; 2、你的学历&#xff1f;学…...

建设银行网站怎么取消短信服务/建立自己的网站

PHPCMS是一款网站管理软件。该软件采用模块化开发&#xff0c;支持多种分类方式&#xff0c;使用它可方便实现个性化网站的设计、开发与维护。它支持众多的程序组合&#xff0c;可轻松实现网站平台迁移&#xff0c;并可广泛满足各种规模的网站需求&#xff0c;可靠性高&#xf…...

采票网站刷流水做任务/seo网络推广案例

今天刚装了Ubuntu 11.04。然后安装了Eclipse后发现linux下安装eclipse时候都是预装的Openjdk&#xff0c;所以把openjdk给卸载了&#xff0c;方式如下&#xff1a; &#xff08;1&#xff09;先在Ubuntu Software Center中把openjdk给卸载了。 &#xff08;2&#xff09;安装 s…...

单页面网站可以做自适应网站吗/网络营销的方法有哪些?

一、准备 hive下载地址&#xff1a;mirror.bit.edu.cn/apache/hive… 二、Hadoop环境搭建 Hadoop安装和配置&#xff0c;请看Hadoop单机版安装 三、mysql安装 因为Hive的默认元数据是Mysql&#xff0c;所以先要安装Mysql。 首先查看mysql 是否已经安装 rpm -qa | grep mysql 复…...