当前位置: 首页 > news >正文

网络原理(一)网络基础,包括IP ,网络相关的定义

网络基础,包括IP ,网络相关的定义

  • 网络基础
    • 冲突域
    • 广播域
    • DNS
    • NAT
    • NAPT

网络基础

以下图片是书上的网图。

什么是IP地址?

IP地址(Internet Protocol Address)是指互联网协议地址,又译为网际协议地址。P地址是IP协议提供的一种统一的地址格式,它为互联网上的每一个网络和每一台主机分配一个逻辑地址,以此来屏蔽物理地址的差异。

格式:通常是一个32位的二进制数,被分割成4个8位二进制

IP地址分为两个部分,网络号和主机号

  • 网络号:标识网段,保证相互连接的两个网段具有不同的标识;
  • 主机号:标识主机,同一网段内,主机之间具有相同的网络号,但是必须有不同的主机号
    在这里插入图片描述
    在这里插入图片描述

这个因为时代问题,现在大部分存在的IP地址通常都是 IPv4 ,使得所有的IP地址会有用完的一天。此时就有可能出现IP不够用的一天,并且在中美问题出现问题的今天,IP地址的分配是有美国进行全球分配的,对于国防和网络安全存在隐患,所以经过国家统一调度,使得国内的设备现在支持两种 IP 方式,也就是 IPv6 和 IPv4,目前国内还在沿用 IPv4 ,但是遇到 特殊状况,就可以随时启动 IPv6 ,规避风险。

在上述分类中:存在 IP 地址浪费的问题:

  1. 单位一般会申请B类网络(C类连接主机数量有限),但实际网络架设时,连接的主机数量又常远
    小于65534(B类连接主机数),造成IP地址浪费;同理,A类网络的IP地址也会造成大量的浪费。

  2. 当一个单位申请了一个网络号。他想将该网络能表示的IP地址再分给它下属的几个小单位时,如果
    在申请新的网络就会造成浪费。

而为了解决子网掩码的问题,引入了子网掩码来进行子网划分。

什么是子网掩码?
子网掩码格式和IP地址一样,也是一个32位的二进制数。

  • 其中左边是网络位,用二进制数字“1”表示,1的数目等于网络位的长度
  • 右边是主机位,用二进制数字“0”表示,0的数目等于主机位的长度

作用:
划分A,B,C三类 IP 地址子网

如一个B类IP地址:191.100.0.0,按A ~ E类分类来说,网络号二进制数为16位网络号+16位主机号。假设使用子网掩码255.255.128.0(即17) 来划分子网,意味着划分子网后,高 17 位都是网络位 / 网络号,也就是将原来16位主机号,划分为1位子网号+15位主机号。

IP地址组成为:网络号+子网号+主机号,网络号和子网号统一为网络标识(划分子网后的网络号 / 网段)

  • 网络通信时,子网掩码结合IP地址,可以计算获得网络号(划分子网后的网络号)及主机号(划分子网后的主机号)。一般用于判断目的IP与本IP是否为同一个网段。

计算方式:

  • 将 IP 地址和子网掩码进行“按位与”操作(二进制相同位,与操作,两个都是1结果为1,否则为0),得到的结果就是网络号。
  • 将子网掩码二进制按位取反,再与 IP 地址位与计算,得到的就是主机号。
    在这里插入图片描述

特殊的 IP 地址
主机号微 0 的 ip ,192.168.0.0 就是网络好,局域网里不应该存在某个主机,主机号微 0
主机号全为 1 的IP ,广播地址,往这个地址发送UDP 数据包,此时的数据包就会发给整个局域网中的所有主机(TCP不支持广播)
IP 为 127开头,127.* 称之为环回 ip,这个 ip,走的是虚拟网卡,没有IO操作,纯内存操作,所以要比一般IP要快

冲突域

在解释冲突域和一下的问题时首先要明白,路由和MAC以及交换机的作用,这个在我的 Java 网络编程中有体现。

什么是冲突域?

主机之间通过网络设备(集线器、交换机)的物理端口、网线相连时,两个主机在同一时刻同时发送数
据报,如果存在冲突,则该网络范围为一个冲突域(Collision Domain)

冲突域是基于第一层物理层,又称为碰撞域。

  • 集线器接收到数据报后,是将数据报简单的复制、转发到其他所有端口,如果有两个数据报要同时转发,就会出现冲突。整个集线器,即集线器的所有端口为一个冲突域。
  • 交换机接收到数据报后,是将数据报转发到对应的一个端口:两个数据报同时转发到不同端口不存在冲突,但同时转发到一个端口就出现冲突。即交换机可以分割冲突域,分割后,一个端口为一个冲突域。

广播域

什么是广播域?

广播域基于第二层数据链路层。

广播是指某个网络中的主机同时向网络中其它所有主机发送数据(IP、MAC地址设置为广播地址),这个数据所能传播到的范围即为广播域(Broadcast Domain)。

  • 集线器接收到广播数据报,仍是简单的复制、转发到其他所有端口,所以集线器的所有端口为一个广播域。
  • 交换机接收到广播数据报,会转发到其他所有端口;而路由器可以隔离广播域

网络数据传输流程的过程我也在我的 Java 网络编程的中也有体现,并且更加通俗

局域网传输流程:集线器

  1. 发送端在本机ARP缓存表中,根据目的IP查找对应的MAC地址
  2. 如果找到,则可以在数据链路层以太网帧头中,设置目的MAC并发送数据包
  3. 如果没有找到,需要先发送ARP广播请求,让接收端,即目的主机告诉自己,目的MAC是多少
  4. 发送端更新本机ARP缓存表:保存目的IP与目的MAC的映射
  5. 有了目的MAC,就可以按照第(2)个步骤发送数据了。

DNS

DNS,即Domain Name System,域名系统。DNS是一整套从域名映射到IP的系统。
TCP/IP中使用IP地址来确定网络上的一台主机,但是IP地址不方便记忆,且不能表达地址组织信息,于是人们发明了域名,并通过域名系统来映射域名和IP地址。

  • 域名是一个字符串,如 www.baidu.com , hr.nowcoder.com
  • 域名系统为一个树形结构的系统,包含多个根节点
    • 根节点即为根域名服务器,最早IPv4的根域名服务器全球只有13台,IPv6在此基础上扩充了数量。(DNS域名服务器,即提供域名转换为IP地址的服务器)
    • 子节点主要由各级DNS服务器,或DNS缓存构成(Windows系统的DNS缓存在 C:\Windows\System32\drivers\etc\hosts 文件中,Mac/Linux系统的DNS缓存在 /etc/hosts 文件中。)

网络通信发送数据时,如果使用目的主机的域名,需要先通过域名解析查找到对应的IP地址:(浏览器、主机系统、路由器中都保存有DNS缓存。)

  • 域名解析的过程,可以简单的理解为:发送端主机作为域名系统树形结构的一个子节点,通过域名信息,从下到上查找对应IP地址的过程。如果到根节点(根域名服务器)还找不到,即找不到该主机。
  • 域名解析使用DNS协议来传输数据。DNS协议是应用层协议,基于传输层UDP或TCP协议来实现。

NAT

NAT技术当前解决IP地址不够用的主要手段,是路由器的一个重要功能

  • NAT能够将私有IP对外通信时转为全局IP。也就是就是一种将私有IP和全局IP相互转化的技术方法:
  • 很多学校,家庭,公司内部采用每个终端设置私有IP,而在路由器或必要的服务器上设置全局IP;
  • 全局IP要求唯一,但是私有IP不需要;在不同的局域网中出现相同的私有IP是完全不影响的;

NAT IP转换过程
在这里插入图片描述

  • NAT路由器将源地址从10.0.0.10替换成全局的IP 202.244.174.37;
  • NAT路由器收到外部的数据时,又会把目标IP从202.244.174.37替换回10.0.0.10;
  • 在NAT路由器内部,有一张自动生成的,用于地址转换的表;
  • 当 10.0.0.10 第一次向 163.221.120.9 发送数据时就会生成表中的映射关系;

NTA将所有的IP地址分为了两大类

  1. 内网 IP:10.* 172.16.* -172.31.* 192.168.*
  2. 外网 IP:其他的 IP 地址
    只要求外网IP唯一,内网IP在不同的局域网中,是允许重复的(同一个局域网里不允许重复)

在NAT 背景下如何通信?
外网设备—》外网设备,不需要任何NAT,就能直接通信
内网设备—》其他内网设备,不允许
外网设备—》内网设备,不允许
内网设备—》外网设备

  • 对应的内网设备的路由器,出发NAT机制进行 IP 替换,此时就会给这个网络数据包的源 IP 替换成路由器自己的IP(此时一个外网IP,就能代表一大批内网的设备了)

IP不够的问题—》动态分配 + NAT 解决

NAPT

那么问题来了,如果局域网内,有多个主机都访问同一个外网服务器,那么对于服务器返回的数据中,目的IP都是相同的。那么NAT路由器如何判定将这个数据包转发给哪个局域网的主机?

这时候NAPT来解决这个问题了。使用IP+port来建立这个关联关系

在这里插入图片描述

NAT技术的缺陷:

由于NAT依赖这个转换表,所以有诸多限制:

  • 无法从NAT外部向内部服务器建立连接;
  • 转换表的生成和销毁都需要额外开销;
  • 通信过程中一旦NAT设备异常,即使存在热备,所有的TCP连接也都会断开;

相关文章:

网络原理(一)网络基础,包括IP ,网络相关的定义

网络基础,包括IP ,网络相关的定义 网络基础冲突域广播域DNSNATNAPT 网络基础 以下图片是书上的网图。 什么是IP地址? IP地址(Internet Protocol Address)是指互联网协议地址,又译为网际协议地址。P地址是…...

Python语义分割与街景识别(2):环境搭建

前言 本文主要用于记录我在使用python做图像识别语义分割训练集的过程,由于在这一过程中踩坑排除BUG过多,因此也希望想做这部分内容的同学们可以少走些弯路。 本文是python语义分割与街景识别的第二篇,关于环境搭建的内容。这个部分是整个流…...

stm32(GD32,apm32),开优化后需要特别注意的地方

提到优化就不得不提及 volatile 使用场景 1:中断服务程序中修改的供其它程序检测的变量,需要加volatile; : 2:多任务环境下各任务间共享的标志,应该加volatile; 3:并行设备的硬件寄存器&#x…...

LLVM 与代码混淆技术

项目源码 什么是 LLVM LLVM 计划启动于2000年,开始由美国 UIUC 大学的 Chris Lattner 博士主持开展,后来 Apple 也加入其中。最初的目的是开发一套提供中间代码和编译基础设施的虚拟系统。 LLVM 命名最早源自于底层虚拟机(Low Level Virtu…...

R语言---使用runway进行机器学习模型性能的比较

R语言—使用runway进行机器学习模型性能的比较 #dataloadrm(list=ls())#librarylibrary(dcurves)library(gtsummary)library(tidyverse)library(mlr3verse)library(tidyverse)library(data.table)</...

C++斩题录|递归专题 | leetcode50. Pow(x, n)

个人主页&#xff1a;平行线也会相交 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 平行线也会相交 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…...

详解Redis之Lettuce实战

摘要 是 Redis 的一款高级 Java 客户端&#xff0c;已成为 SpringBoot 2.0 版本默认的 redis 客户端。Lettuce 后起之秀&#xff0c;不仅功能丰富&#xff0c;提供了很多新的功能特性&#xff0c;比如异步操作、响应式编程等&#xff0c;还解决了 Jedis 中线程不安全的问题。 …...

【3】单着色器文件读取

Basic.shader文件&#xff0c;可以发现顶点着色器和片段着色器是写在一个文件里的&#xff0c;这里我们将他们读取出来&#xff0c;而不是上一篇使用string的方式。 #shader vertex #version 330 corelayout(location 0) in vec4 position;void main() {gl_Position positio…...

祝贺埃文科技入选河南省工业企业数据安全技术支撑单位

近日&#xff0c;河南省工业信息安全产业发展联盟公布了河南省工业信息安全应急服务支撑单位和河南省工业企业数据安全技术支撑单位遴选结果,最终评选出19家单位作为第一届河南省工业信息安全应急服务支撑单位和河南省工业企业数据安全技术支撑单位。 埃文科技凭借自身技术优势…...

Chinese-LLaMA-Alpaca-2模型的测评

训练生成效果评测 Fastchat Chatbot Arena推出了模型在线对战平台&#xff0c;可浏览和评测模型回复质量。对战平台提供了胜率、Elo评分等评测指标&#xff0c;并且可以查看两两模型的对战胜率等结果。生成回复具有随机性&#xff0c;受解码超参、随机种子等因素影响&#xff…...

SLAM论文详解(5) — Bundle_Adjustment_LM(BALM)论文详解

目录 1 摘要 2 相关工作 3 BA公式和导数 A. 直接BA公式 B. 导数 C. 二阶近似 4 自适应体素化 5. 将BALM结合进LOAM 6. 实验 7. 算法应用场景解析 1 摘要 Bundle Adjustment是一种用于同时估计三维结构和传感器运动运动的优化算法。在视觉SLAM&#xff0c;三维重建等…...

C语言对单链表所有操作与一些相关面试题

目录 单链表的特性 单链表的所有操作 定义一个单链表 创建一个链表头 插入数据(头插法) 插入数据(尾插法) 查找节点 修改数据节点 删除节点 打印数据 销毁链表 翻转链表 打印链表长度 冒泡排序 快排 堆排 查找倒数第K个节点&#xff08;双指针法&#xff09; …...

高防服务器如何抵御大规模攻击

高防服务器如何抵御大规模攻击&#xff1f;高防服务器是一种专门设计用于抵御大规模攻击的服务器&#xff0c;具备出色的安全性和可靠性。在当今互联网时代&#xff0c;网络安全问题日益严重&#xff0c;DDOS攻击&#xff08;分布式拒绝服务攻击&#xff09;等高强度攻击已成为…...

Go 接口和多态

在讲解具体的接口之前&#xff0c;先看如下问题。 使用面向对象的方式&#xff0c;设计一个加减的计算器 代码如下&#xff1a; package mainimport "fmt"//父类&#xff0c;这是结构体 type Operate struct {num1 intnum2 int }//加法子类&#xff0c;这是结构体…...

Git忽略文件的几种方法,以及.gitignore文件的忽略规则

目录 .gitignore文件Git忽略规则以及优先级.gitignore文件忽略规则常用匹配示例&#xff1a; 有三种方法可以实现忽略Git中不想提交的文件。1、在Git项目中定义 .gitignore 文件&#xff08;优先级最高&#xff0c;推荐&#xff01;&#xff09;2、在Git项目的设置中指定排除文…...

C语言——指针进阶(2)

继续上次的指针&#xff0c;想起来还有指针的内容还没有更新完&#xff0c;今天来补上之前的内容&#xff0c;上次我们讲了函数指针&#xff0c;并且使用它来实现一些功能&#xff0c;今天我们就讲一讲函数指针数组等内容&#xff0c;废话不多说&#xff0c;我们开始今天的学习…...

【汇编中的寄存器分类与不同寄存器的用途】

汇编中的寄存器分类与不同寄存器的用途 寄存器分类 在计算机体系结构中&#xff0c;8086CPU&#xff0c;寄存器可以分为以下几类&#xff1a; 1. 通用寄存器&#xff1a; 通用寄存器是用于存储数据和执行算术运算的寄存器。在 x86 架构中&#xff0c;这些通用寄存器通常包括…...

基于文本提示的图像目标检测与分割实践

近年来&#xff0c;计算机视觉取得了显着的进步&#xff0c;特别是在图像分割和目标检测任务方面。 最近值得注意的突破之一是分段任意模型&#xff08;SAM&#xff09;&#xff0c;这是一种多功能深度学习模型&#xff0c;旨在有效地从图像和输入提示中预测对象掩模。 通过利用…...

【4-5章】Spark编程基础(Python版)

课程资源&#xff1a;&#xff08;林子雨&#xff09;Spark编程基础(Python版)_哔哩哔哩_bilibili 第4章 RDD编程&#xff08;21节&#xff09; Spark生态系统&#xff1a; Spark Core&#xff1a;底层核心&#xff08;RDD编程是针对这个&#xff09;Spark SQL&#xff1a;…...

04 卷积神经网络搭建

一、数据集 MNIST数据集是从NIST的两个手写数字数据集&#xff1a;Special Database 3 和Special Database 1中分别取出部分图像&#xff0c;并经过一些图像处理后得到的[参考]。 MNIST数据集共有70000张图像&#xff0c;其中训练集60000张&#xff0c;测试集10000张。所有图…...

【hadoop运维】running beyond physical memory limits:正确配置yarn中的mapreduce内存

文章目录 一. 问题描述二. 问题分析与解决1. container内存监控1.1. 虚拟内存判断1.2. 物理内存判断 2. 正确配置mapReduce内存2.1. 配置map和reduce进程的物理内存&#xff1a;2.2. Map 和Reduce 进程的JVM 堆大小 3. 小结 一. 问题描述 在hadoop3.0.3集群上执行hive3.1.2的任…...

数据结构--6.5二叉排序树(插入,查找和删除)

目录 一、创建 二、插入 三、删除 二叉排序树&#xff08;Binary Sort Tree&#xff09;又称为二叉查找树&#xff0c;它或者是一棵空树&#xff0c;或者是具有下列性质的二叉树&#xff1a; ——若它的左子树不为空&#xff0c;则左子树上所有结点的值均小于它的根结构的值…...

无需公网IP,在家SSH远程连接公司内网服务器「cpolar内网穿透」

文章目录 1. Linux CentOS安装cpolar2. 创建TCP隧道3. 随机地址公网远程连接4. 固定TCP地址5. 使用固定公网TCP地址SSH远程 本次教程我们来实现如何在外公网环境下&#xff0c;SSH远程连接家里/公司的Linux CentOS服务器&#xff0c;无需公网IP&#xff0c;也不需要设置路由器。…...

Java工具类

一、org.apache.commons.io.IOUtils closeQuietly() toString() copy() toByteArray() write() toInputStream() readLines() copyLarge() lineIterator() readFully() 二、org.apache.commons.io.FileUtils deleteDirectory() readFileToString() de…...

makefile之使用函数wildcard和patsubst

Makefile之调用函数 调用makefile机制实现的一些函数 $(function arguments) : function是函数名,arguments是该函数的参数 参数和函数名用空格或Tab分隔,如果有多个参数,之间用逗号隔开. wildcard函数:让通配符在makefile文件中使用有效果 $(wildcard pattern) 输入只有一个参…...

算法通关村第十八关——排列问题

LeetCode46.给定一个没有重复数字的序列&#xff0c;返回其所有可能的全排列。例如&#xff1a; 输入&#xff1a;[1,2,3] 输出&#xff1a;[[1,2,3]&#xff0c;[1,3,2]&#xff0c;[2,1,3]&#xff0c;[2,3,1]&#xff0c;[3,1,2]&#xff0c;[3,2,1]] 元素1在[1,2]中已经使…...

基于STM32设计的生理监测装置

一、项目功能要求 设计并制作一个生理监测装置&#xff0c;能够实时监测人体的心电图、呼吸和温度&#xff0c;并在LCD液晶显示屏上显示相关数据。 随着现代生活节奏的加快和环境的变化&#xff0c;人们对身体健康的关注程度越来越高。为了及时掌握自身的生理状况&#xff0c…...

Go-Python-Java-C-LeetCode高分解法-第五周合集

前言 本题解Go语言部分基于 LeetCode-Go 其他部分基于本人实践学习 个人题解GitHub连接&#xff1a;LeetCode-Go-Python-Java-C Go-Python-Java-C-LeetCode高分解法-第一周合集 Go-Python-Java-C-LeetCode高分解法-第二周合集 Go-Python-Java-C-LeetCode高分解法-第三周合集 G…...

【前端知识】前端加密算法(base64、md5、sha1、escape/unescape、AES/DES)

前端加密算法 一、base64加解密算法 简介&#xff1a;Base64算法使用64个字符&#xff08;A-Z、a-z、0-9、、/&#xff09;来表示二进制数据的64种可能性&#xff0c;将每3个字节的数据编码为4个可打印字符。如果字节数不是3的倍数&#xff0c;将会进行填充。 优点&#xff1…...

leetcode 925. 长按键入

2023.9.7 我的基本思路是两数组字符逐一对比&#xff0c;遇到不同的字符&#xff0c;判断一下typed与上一字符是否相同&#xff0c;不相同返回false&#xff0c;相同则继续对比。 最后要分别判断name和typed分别先遍历完时的情况。直接看代码&#xff1a; class Solution { p…...

网站制作应该选什么/如何在百度上做广告

v-model v-bind v-on v-if v-for v-html v-pre v-text v-show...

33岁改行做网站建设/营销型网站建设的步骤流程是什么

&#xff08;资料源于MSDN&#xff0c;本文仅对其进行翻译、批注。其链接为&#xff1a;http://msdn.microsoft.com/en-us/library/windows/desktop/ms644959%28vvs.85%29.aspx本文链接&#xff1a;http://blog.csdn.net/wlsgzl/article/details/37648721转载请注明出处并保持文…...

整人网站怎么做/sem推广竞价托管公司

先对树DFS一边&#xff0c;建立dfs序列 tr[p].dep表示p的深度&#xff0c;tr[p].sz表示p的子树的大小&#xff08;不包括p自己&#xff09; 对dfs序列建立主席树乱搞 Claris大爷&#xff1a;"线段树中区间[a,b]表示深度在[a,b]范围内的sz的和" 貌似明白了>_< …...

手表怎么在网站做推广/南昌seo方案

Silverlight 有没有对 FLV 视频提供支持&#xff1f; 好吧&#xff0c;所有的开发人员都是懒惰的&#xff0c;ME2。先查查微软的文档吧&#xff0c;FLV 视频是如此的普及&#xff0c;没准儿微软已经在 Silverlight 中提供了对 FLV 视频的支持。 结果&#xff0c;微软在 Silve…...

怎样做网站推广啊视频/移动端关键词排名优化

一、介绍 学习目标&#xff1a;熟练使用“标准基本体”和“扩展基本体”内的按钮来创建对象。 软件环境&#xff1a;3ds Max2015 二、实验步骤 1&#xff0c;启动3ds Max&#xff0c;使用“长方体”工具在场景中创建一个长方体作为空间的地面&#xff0c;然后在“修改”面板中设…...

西安三桥网站建设/网站推广系统方案

首先要修改server.xml里面的Host主机信息<Host name"服务器的ip地址" appBase"webapps"unpackWARs"true" autoDeploy"true"> 然后如果要修改端口的话&#xff0c;默认是8080端口&#xff0c;改成80端口&#xff1a; <Connec…...