当前位置: 首页 > news >正文

【深度学习】Mini-Batch梯度下降法

Mini-Batch梯度下降法

在开始Mini-Batch算法开始之前,请确保你已经掌握梯度下降的最优化算法。

在训练神经网络时,使用向量化是加速训练速度的一个重要手段,它可以避免使用显式的for循环,并且调用经过大量优化的矩阵计算函数库。但是当数量增加到一定级别的时候,比如说五百万、五千万或者更大,此时此刻即便是进行了向量化,其训练速度也是挺慢的。Mini-Batch最优化算法则可以加速这种情况下的训练过程。

字如其名,Mini-Batch梯度下降法就是将数据集划分为若干个更小的数据集(Mini-Batch),然后依次对小规模数据集进行处理。假设每一个子集中只有1000个数据样本,那么在总样本量为500万的时候,会被分为5000个子集。原数据集的特征部分为 x ( 1 ) , x ( 2 ) , x ( 3 ) . . . x ( 1000 ) , x ( 1001 ) . . . . x ( m ) x^{(1)},x^{(2)},x^{(3)}...x^{(1000)},x^{(1001)}....x^{(m)} x(1),x(2),x(3)...x(1000),x(1001)....x(m),现在被划分为:
X { 1 } = x ( 1 ) , x ( 2 ) , x ( 3 ) . . . x ( 1000 ) X { 2 } = x ( 1001 ) , x ( 1002 ) , x ( 1003 ) . . . x ( 2000 ) X { 3 } = x ( 2001 ) , x ( 2002 ) , x ( 2003 ) . . . x ( 3000 ) X^{\{1\}}=x^{(1)},x^{(2)},x^{(3)}...x^{(1000)}\\ X^{\{2\}}=x^{(1001)},x^{(1002)},x^{(1003)}...x^{(2000)}\\ X^{\{3\}}=x^{(2001)},x^{(2002)},x^{(2003)}...x^{(3000)} X{1}=x(1),x(2),x(3)...x(1000)X{2}=x(1001),x(1002),x(1003)...x(2000)X{3}=x(2001),x(2002),x(2003)...x(3000)
其中 X { i } X^{\{i}\} X{i}表示第i个Mini-Batch的样本集
同样地,标签集也被划为5000个子集,分别是
Y { 1 } = y ( 1 ) , y ( 2 ) , y ( 3 ) . . . y ( 1000 ) Y { 2 } = y ( 1001 ) , y ( 1002 ) , y ( 1003 ) . . . y ( 2000 ) Y { 3 } = y ( 2001 ) , y ( 2002 ) , x ( 2003 ) . . . x ( 3000 ) Y^{\{1\}}=y^{(1)},y^{(2)},y^{(3)}...y^{(1000)}\\ Y^{\{2\}}=y^{(1001)},y^{(1002)},y^{(1003)}...y^{(2000)}\\ Y^{\{3\}}=y^{(2001)},y^{(2002)},x^{(2003)}...x^{(3000)} Y{1}=y(1),y(2),y(3)...y(1000)Y{2}=y(1001),y(1002),y(1003)...y(2000)Y{3}=y(2001),y(2002),x(2003)...x(3000)
其中 Y { i } Y^{\{i}\} Y{i}表示第i个Mini-Batch的标签集

一个完整的Mini-Batch子集由标签子集和样本子集构成,第i个Mini-Batch子集等于 ( X { i } , Y { i } ) (X^{\{i\}},Y^{\{i\}}) (X{i},Y{i})
接下来说一下向量化表示,假设一个样本有n个特征,一个Mini-Batch有m个样本,那么他的KaTeX parse error: Expected 'EOF', got '}' at position 2: X}̲应该是一个m行n列的矩阵,他的Y是一个m行1列的矩阵

划分完自己之后,然后我们会单独处理各个Mini-Batch子集。比如说先前向传播,然后计算代价函数,根据代价函数反向传播求出梯度下降中的导数,然后使用梯度下降进行计算。就和一个神经网络差不多,不是吗?总的来说就是训练规模较大的神经网络的时候,我们应该将他们切分为若干个较小的子集,然后让各个子集独立地进行神经网路的训练,就是这样。

在传统的梯度下降中(左图),代价函数cost应该随着迭代的进行而逐渐下降;但是在Mini-Batch中就不一样了,他的cost函数会有一定的波动,但是整体应该是向下的(右图)
在这里插入图片描述
此外,需要我们个人决定的一个关键参数是Mini-Batch的大小,假设如果将一个数据集只划分为1个Mini-Batch,那么实际上他就是普通的梯度下降法,这是情况1;另一个极端是,一个Mini-Batch中只有一个样本,每个样本就是一个Mini-Batch,这种情况下的算法称之为随机梯度下降,这是情况2。

在情况1中,其实就是普通的梯度下降,他下降会十分“顺滑”,这是因为相对噪音比较小,但是对样本量大的情况来说,他将会相当耗时(蓝线)。而在情况2中,因为每个样本都是单独的Mini-Batch,大多数时候会朝着最小值前进,但是有一些样本是噪声样本,因此偶尔会指向错误的方向,因此这会使得其路线十分的九转十八弯(紫线)。而且他不会稳定收敛于一个点,而是在最小值的周围反复打转

上述的两个极端例子我们可以知道,当Mini-Batch子集设计的太大的时候,虽然噪声少,下降较为顺滑,但是会有较大的时间开销;反之,较小的子集会导致噪声较大,下降的精度不高,但是单次训练速度快,而且较小的子集也无法充分来自于向量化的训练加速,总训练时间反而不是最快的。在实际中,选择适中的子集大小能够保证一定的精度,也能提高速度,并且利用好向量化带来的加速,在此基础之上,根据自己的目标选择合适的子集大小,平衡好训练速度和精度问题

相关文章:

【深度学习】Mini-Batch梯度下降法

Mini-Batch梯度下降法 在开始Mini-Batch算法开始之前,请确保你已经掌握梯度下降的最优化算法。 在训练神经网络时,使用向量化是加速训练速度的一个重要手段,它可以避免使用显式的for循环,并且调用经过大量优化的矩阵计算函数库。…...

AI项目六:WEB端部署YOLOv5

若该文为原创文章,转载请注明原文出处。 一、介绍 最近接触网页大屏,所以就想把YOLOV5部署到WEB端,通过了解,知道了两个方法: 1、基于Flask部署YOLOv5目标检测模型。 2、基于Streamlit部署YOLOv5目标检测。 代码在…...

敲代码常用快捷键

1、代码拖动 PyCharm:按住 shiftalt鼠标选中某一区域来拖动,即可实现拖动这一区域至指定区域。Visual Studio Code (VSCode): - Windows/Linux:Alt 鼠标左键拖动 - MacOS:Option 鼠标左键拖动 IntelliJ IDEA: - Win…...

MyBatis: 分页插件PageHelper直接传递分页参数的用法

一、加分页插件依赖 <dependency><groupId>com.github.pagehelper</groupId><artifactId>pagehelper-spring-boot-starter</artifactId><version>1.2.13</version></dependency>二、配置分页插件&#xff0c;并配置相关属性&a…...

Python基于Flask的高校舆情分析,舆情监控可视化系统

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W,Csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 运行效果图 基于Python的微博大数据舆情分析&#xff0c;舆论情感分析可视化系统 系统介绍 微博舆情分析系…...

Python第一次作业练习

题目分析&#xff1a; """ 参考学校的相关规定。 对于四分制&#xff0c;百分制中的90分及以上可视为绩点中的4分&#xff0c;80 分及以上为3分&#xff0c;70 分以上为2分&#xff0c;60 分以上为1分; 五分制中的5分为四分制中的4分&#xff0c;4分为3分&#…...

InstallShield打包升级时不覆盖原有文件的解决方案

一个.NET Framework的Devexpress UI Windows Form项目&#xff0c;用的InstallShield&#xff0c;前些个版本都好好的&#xff0c;最近几个版本突然就没法更新了&#xff0c;每次更新的时候都覆盖不了原文件&#xff0c;而且这样更新后第一次打开程序&#xff08;虽然是老程序&…...

服务器巡检表-监控指标

1、巡检指标 系统资源K8S集群NginxJAVA应用RabbitMQRedisPostgreSQLElasticsearchELK日志系统 2、巡检项 检查项目 检查指标 检查标准 系统资源 CPU 使用率 正常&#xff1a;&#xff1c;70% 低风险&#xff1a;≥ 70% 中风险&#xff1a;≥ 85% 高风险&#xff1a;≥ 9…...

无涯教程-JavaScript - DDB函数

描述 DDB函数使用双倍余额递减法或您指定的某些其他方法返回指定期间内资产的折旧。 语法 DDB (cost, salvage, life, period, [factor])争论 Argument描述Required/OptionalCostThe initial cost of the asset.RequiredSalvage 折旧结束时的价值(有时称为资产的残值)。 该…...

uniapp打包微信小程序。报错:https://api.weixin.qq.com 不在以下 request 合法域名列表

场景&#xff1a;在进行打包上传测试时&#xff0c;发现登录失效&#xff0c;但在测试中【勾选不效应合法域名】就可以。 出现原因&#xff1a;我在获取到用户code后&#xff0c;直接使用调用官方接口换取openid 解决方案&#xff1a; 可以把code带给后端&#xff0c;让他们返…...

stm32之31.iic

iic双线制。一根是SCL&#xff0c;作为时钟同步线;一根是SDA&#xff0c;作为数据传输线 SDN #include "iic.h"#define SCL PBout(8)#define SDA_W PBout(9) #define SDA_R PBin(9)void IIC_GPIOInit(void) {GPIO_InitTypeDef GPIO_InitStructure;//使能时钟GR…...

新的 ChatGPT 提示工程技术:程序模拟

即时工程的世界在各个层面上都令人着迷,并且不乏巧妙的方法来推动像 ChatGPT 这样的代理生成特定类型的响应。思想链 (CoT)、基于指令、N-shot、Few-shot 等技术,甚至奉承/角色分配等技巧都是充满提示的库背后的灵感,旨在满足各种需求。 在本文中,我将深入研究一项技术,据…...

【Python】爬虫基础

爬虫是一种模拟浏览器实现&#xff0c;用以抓取网站信息的程序或者脚本。常见的爬虫有三大类&#xff1a; 通用式爬虫&#xff1a;通用式爬虫用以爬取一整个网页的信息。 聚焦式爬虫&#xff1a;聚焦式爬虫可以在通用式爬虫爬取到的一整个网页的信息基础上只选取一部分所需的…...

leetcode分类刷题:队列(Queue)(三、优先队列用于归并排序)

1、当TopK问题出现在多个有序序列中时&#xff0c;就要用到归并排序的思想了 2、将优先队列初始化为添加多个有序序列的首元素的形式&#xff0c;再循环K次优先队列的出队和出队元素对应序列下个元素的入队&#xff0c;就能得到TopK的元素了 3、这些题目好像没有TopK 大用小顶堆…...

无线窨井水位监测仪|排水管网智慧窨井液位计安装案例

城市窨井在城市排水、雨水、污水输送等方面发挥着重要作用&#xff0c;是污水管网、排水管网 建设重要的组成部分。随着城镇精细化建设及人民安全防范措施水平的提高&#xff0c;对窨井内水位的监测提出了更高的要求&#xff0c;他是排水管网问题的晴雨表&#xff0c;窨井信息化…...

024 - STM32学习笔记 - 液晶屏控制(一) - LTDC与DMA2D初始

024- STM32学习笔记 - LTDC控制液晶屏 在学习如何控制液晶屏之前&#xff0c;先了解一下显示屏的分类&#xff0c;按照目前市场上存在的各种屏幕材质&#xff0c;主要分为CRT阴极射线管显示屏、LCD液晶显示屏、LED显示屏、OLED显示屏&#xff0c;在F429的开发板上&#xff0c;…...

Python数据容器:dict(字典、映射)

1、什么是字典 Python中的字典是通过key找到对应的Value&#xff08;相当于现实生活中通过“字”找到“该字的含义” 我们前面所学习过的列表、元组、字符串以及集合都不能够提供通过某个东西找到其关联的东西的相关功能&#xff0c;字典可以。 例如 这里有一份成绩单&#xf…...

2023年基因编辑行业研究报告

第一章 行业发展概况 1.1 定义 基因编辑&#xff08;Gene Editing&#xff09;&#xff0c;又称基因组编辑&#xff08;Genome Editing&#xff09;或基因组工程&#xff08;Genome Engineering&#xff09;&#xff0c;是一项精确的科学技术&#xff0c;可以对含有遗传信息的…...

Spring MVC:请求转发与请求重定向

Spring MVC 请求转发请求重定向附 请求转发 转发&#xff08; forward &#xff09;&#xff0c;指服务器接收请求后&#xff0c;从一个资源跳转到另一个资源中。请求转发是一次请求&#xff0c;不会改变浏览器的请求地址。 简单示例&#xff1a; 1.通过 String 类型的返回值…...

按键灯待机2秒后灭掉

修改文件&#xff1a;/device/mediatek/mt6580/init.mt6580.rc chown system system /sys/class/leds/red/triggerchown system system /sys/class/leds/green/triggerchown system system /sys/class/leds/blue/triggerchown system system sys/devices/platform/device_info/…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1&#xff1a;HTML/CSS 前端高频面试题2&#xff1a;浏览器/计算机网络 前端高频面试题3&#xff1a;JavaScript 1.什么是强缓存、协商缓存&#xff1f; 强缓存&#xff1a; 当浏览器请求资源时&#xff0c;首先检查本地缓存是否命中。如果命…...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究

摘要&#xff1a;在消费市场竞争日益激烈的当下&#xff0c;传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序&#xff0c;探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式&#xff0c;分析沉浸式体验的优势与价值…...

RabbitMQ 各类交换机

为什么要用交换机&#xff1f; 交换机用来路由消息。如果直发队列&#xff0c;这个消息就被处理消失了&#xff0c;那别的队列也需要这个消息怎么办&#xff1f;那就要用到交换机 交换机类型 1&#xff0c;fanout&#xff1a;广播 特点 广播所有消息​​&#xff1a;将消息…...