python使用openvc库进行图像数据增强
以下是使用Python和OpenCV库实现图像数据增强的简单示例代码,其中包括常用的数据增强操作:
import cv2
import numpy as np
import os# 水平翻转
def horizontal_flip(image):return cv2.flip(image, 1)# 垂直翻转
def vertical_flip(image):return cv2.flip(image, 0)# 随机旋转
def random_rotation(image, angle_range=(-10, 10)):angle = np.random.randint(angle_range[0], angle_range[1])height, width = image.shape[:2]rotation_matrix = cv2.getRotationMatrix2D((width / 2, height / 2), angle, 1)rotated_image = cv2.warpAffine(image, rotation_matrix, (width, height))return rotated_image# 随机裁剪
def random_crop(image, crop_size=(224, 224)):height, width = image.shape[:2]left = np.random.randint(0, width - crop_size[0])top = np.random.randint(0, height - crop_size[1])right = left + crop_size[0]bottom = top + crop_size[1]cropped_image = image[top:bottom, left:right]return cropped_image# 添加随机噪声
def random_noise(image, noise_range=(20, 50)):noise = np.random.randint(noise_range[0], noise_range[1], size=image.shape, dtype=np.uint8)noisy_image = cv2.add(image, noise)return np.clip(noisy_image, 0, 255)# 设置原始图像路径和增强后图像保存路径
original_path = "original_images"
augmented_path = "augmented_images"# 确保存储路径存在
os.makedirs(augmented_path, exist_ok=True)# 遍历原始图像路径下的所有图像
for filename in os.listdir(original_path):if filename.endswith(".jpg") or filename.endswith(".png"):image_path = os.path.join(original_path, filename)image = cv2.imread(image_path)# 水平翻转h_flip = horizontal_flip(image)cv2.imwrite(os.path.join(augmented_path, f"flip_h_{filename}"), h_flip)# 垂直翻转v_flip = vertical_flip(image)cv2.imwrite(os.path.join(augmented_path, f"flip_v_{filename}"), v_flip)# 随机旋转rotated = random_rotation(image)cv2.imwrite(os.path.join(augmented_path, f"rotated_{filename}"), rotated)# 随机裁剪cropped = random_crop(image)cv2.imwrite(os.path.join(augmented_path, f"crop_{filename}"), cropped)# 添加随机噪声noisy = random_noise(image)cv2.imwrite(os.path.join(augmented_path, f"noisy_{filename}"), noisy)
在这个示例代码中,我们使用OpenCV库来加载和处理图像。我们定义了几个常用的数据增强操作函数,包括水平翻转、垂直翻转、随机旋转、随机裁剪和添加随机噪声。然后,我们遍历原始图像路径下的所有图像,对每张图像进行数据增强操作,并保存到增强后图像保存路径。
请注意,为了运行此代码,您需要安装OpenCV库。可以使用pip install opencv-python命令来安装。同时,确保将原始图像放在指定的原始图像路径下,并设置好增强后图像的保存路径。
# -*- coding: utf-8 -*-import cv2
import numpy as np
import os.path
import copy# 椒盐噪声def SaltAndPepper(src, percetage):SP_NoiseImg = src.copy()SP_NoiseNum = int(percetage*src.shape[0]*src.shape[1])for i in range(SP_NoiseNum):randR = np.random.randint(0, src.shape[0]-1)randG = np.random.randint(0, src.shape[1]-1)randB = np.random.randint(0, 3)if np.random.randint(0, 1) == 0:SP_NoiseImg[randR, randG, randB] = 0else:SP_NoiseImg[randR, randG, randB] = 255return SP_NoiseImg# 高斯噪声def addGaussianNoise(image, percetage):G_Noiseimg = image.copy()w = image.shape[1]h = image.shape[0]G_NoiseNum = int(percetage*image.shape[0]*image.shape[1])for i in range(G_NoiseNum):temp_x = np.random.randint(0, h)temp_y = np.random.randint(0, w)G_Noiseimg[temp_x][temp_y][np.random.randint(3)] = np.random.randn(1)[0]return G_Noiseimg# 昏暗def darker(image, percetage=0.9):image_copy = image.copy()w = image.shape[1]h = image.shape[0]# get darkerfor xi in range(0, w):for xj in range(0, h):image_copy[xj, xi, 0] = int(image[xj, xi, 0]*percetage)image_copy[xj, xi, 1] = int(image[xj, xi, 1]*percetage)image_copy[xj, xi, 2] = int(image[xj, xi, 2]*percetage)return image_copy# 亮度def brighter(image, percetage=1.5):image_copy = image.copy()w = image.shape[1]h = image.shape[0]# get brighterfor xi in range(0, w):for xj in range(0, h):image_copy[xj, xi, 0] = np.clip(int(image[xj, xi, 0]*percetage), a_max=255, a_min=0)image_copy[xj, xi, 1] = np.clip(int(image[xj, xi, 1]*percetage), a_max=255, a_min=0)image_copy[xj, xi, 2] = np.clip(int(image[xj, xi, 2]*percetage), a_max=255, a_min=0)return image_copy# 旋转def rotate(image, angle, center=None, scale=1.0):(h, w) = image.shape[:2]# If no rotation center is specified, the center of the image is set as the rotation centerif center is None:center = (w / 2, h / 2)m = cv2.getRotationMatrix2D(center, angle, scale)rotated = cv2.warpAffine(image, m, (w, h))return rotated# 翻转def flip(image):flipped_image = np.fliplr(image)return flipped_image# 图片文件夹路径
file_dir = r'test/img/'
for img_name in os.listdir(file_dir):img_path = file_dir + img_nameimg = cv2.imread(img_path)# cv2.imshow("1",img)# cv2.waitKey(5000)# 旋转rotated_90 = rotate(img, 90)cv2.imwrite(file_dir + img_name[0:-4] + '_r90.jpg', rotated_90)rotated_180 = rotate(img, 180)cv2.imwrite(file_dir + img_name[0:-4] + '_r180.jpg', rotated_180)for img_name in os.listdir(file_dir):img_path = file_dir + img_nameimg = cv2.imread(img_path)# 镜像flipped_img = flip(img)cv2.imwrite(file_dir + img_name[0:-4] + '_fli.jpg', flipped_img)# 增加噪声# img_salt = SaltAndPepper(img, 0.3)# cv2.imwrite(file_dir + img_name[0:7] + '_salt.jpg', img_salt)img_gauss = addGaussianNoise(img, 0.3)cv2.imwrite(file_dir + img_name[0:-4] + '_noise.jpg', img_gauss)# 变亮、变暗img_darker = darker(img)cv2.imwrite(file_dir + img_name[0:-4] + '_darker.jpg', img_darker)img_brighter = brighter(img)cv2.imwrite(file_dir + img_name[0:-4] + '_brighter.jpg', img_brighter)blur = cv2.GaussianBlur(img, (7, 7), 1.5)# cv2.GaussianBlur(图像,卷积核,标准差)cv2.imwrite(file_dir + img_name[0:-4] + '_blur.jpg', blur)
相关文章:
python使用openvc库进行图像数据增强
以下是使用Python和OpenCV库实现图像数据增强的简单示例代码,其中包括常用的数据增强操作: import cv2 import numpy as np import os# 水平翻转 def horizontal_flip(image):return cv2.flip(image, 1)# 垂直翻转 def vertical_flip(image):return cv2…...
如何利用Api接口获取手机当前的网络位置信息
在移动互联网时代,手机定位已经成为了一个日常化的需求,无论是导航、社交还是打车等服务都需要获取手机的位置信息。而获取手机位置信息最基础的一步就是获取手机当前的网络位置信息,本文将介绍如何利用API接口获取手机当前的网络位置信息。 …...
vue-elementPlus自动按需导入和主题定制
elementPlus自动按需导入 装包 -> 配置 1. 装包(主包和两个插件包) $ npm install element-plus --save npm install -D unplugin-vue-components unplugin-auto-import 2. 配置 在vite.config.js文件中配置,配置完重启(n…...
idea中dataBase模板生成
controller.java.vm ##定义初始变量 #set($tableName $tool.append($tableInfo.name, "Controller")) ##设置回调 $!callback.setFileName($tool.append($tableName, ".java")) $!callback.setSavePath($tool.append($tableInfo.savePath, "/contro…...
pc端测试手机浏览器运行情况,主要是测试硬件功能
测试h5震动摇晃等功能时不方便测试,需要连电脑显示调试数据 方法: 1.需要手机下载谷歌浏览器,pc端用edge或这谷歌浏览器 2.手机打开USB调试,打开要测试的网页 3.pc端地址栏输入edge://inspect/#devices(这里用的edge浏…...
软件概要设计-架构真题(二十五)
软件概要设计包括软件设计的结构、确定系统功能模块及其相互关系,主要采用()描述程序的结构。(2018年) 程序流程图、PAD图和伪代码模块结构图、数据流图和盒图模块结构图、层次图和HIPO图程序流程图、数据流图和层次图…...
CSDN发文表情包整理
文章目录 简介部分Emoji表情符号简表人物自然物品地点符号 各种Emoji表情链接 简介 CSDN支持Markdown语法及Emoji表情,使用各种Emoji表情可以使得自己的博文更加生动多彩。一般有两种在支持Markdown的语法环境中添加Emoji表情:1.直接将表情包复制到文档…...
springBoot对接Apache POI 实现excel下载和上传
搭建springboot项目 此处可以参考 搭建最简单的SpringBoot项目_Steven-Russell的博客-CSDN博客 配置Apache POI 依赖 <dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>5.2.2</version> </…...
定积分的计算:牛顿-莱布尼茨公式
目录 牛顿-莱布尼茨公式 用C语言代码实现 利用换元积分法和分部积分法 利用奇偶性和周期性求积分 利用已有公式求积分 牛顿-莱布尼茨公式 牛顿-莱布尼茨公式(Newton-Leibniz formula)是微积分学中的基本定理之一,它反映了定积分与被积函…...
shell脚本之case 的用法
shell脚本之case case是Shell脚本中的一种控制流语句,它允许根据变量的值选择不同的执行路径。case语句的语法如下: case word in pattern [| pattern]...) command-list ;; pattern [| pattern]...) command-list ;; ... *) command-list ;; esa…...
第3章 helloworld 驱动实验(iTOP-RK3568开发板驱动开发指南 )
在学习C语言或者其他语言的时候,我们通常是打印一句“helloworld”来开启编程世界的大门。学习驱动程序编程亦可以如此,使用helloworld作为我们的第一个驱动程序。 接下来开始编写第一个驱动程序—helloworld。 3.1 驱动编写 本小节来编写一个最简单的…...
基于PyTorch使用LSTM实现新闻文本分类任务
本文参考 PyTorch深度学习项目实战100例 https://weibaohang.blog.csdn.net/article/details/127154284?spm1001.2014.3001.5501 文章目录 本文参考任务介绍做数据的导入 环境介绍导入必要的包介绍torchnet和keras做数据的导入给必要的参数命名加载文本数据数据前处理模型训…...
Flutter插件的制作和发布
Flutter制作插件有两种方式(以下以android和ios为例): 目录 1.直接在主工程下的android和ios项目内写插件代码:2.创建独立Flutter Plugin项目,制作各端插件后,再引入项目:1. 创建Flutter Plugin…...
【JAVA】异常
作者主页:paper jie 的博客 本文作者:大家好,我是paper jie,感谢你阅读本文,欢迎一建三连哦。 本文录入于《JAVASE语法系列》专栏,本专栏是针对于大学生,编程小白精心打造的。笔者用重金(时间和…...
合同矩阵充要条件
两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。 正惯性指数是矩阵正特征值个数,负惯性指数是矩阵负特征值个数。 即合同矩阵的充分必要条件是特征值的正负号个数相同。 证明: 本论证中的所有矩阵都是对称矩阵。 根据定义,若矩…...
数据分析三剑客之Pandas
1.引入 前面一篇文章我们介绍了numpy,但numpy的特长并不是在于数据处理,而是在它能非常方便地实现科学计算,所以我们日常对数据进行处理时用的numpy情况并不是很多,我们需要处理的数据一般都是带有列标签和index索引的࿰…...
Spring Boot自动装配原理
简介 Spring Boot是一个开源的Java框架,旨在简化Spring应用程序的搭建和开发。它通过自动装配的机制,大大减少了繁琐的配置工作,提高了开发效率。本文将深入探讨Spring Boot的自动装配原理。 自动装配的概述 在传统的Spring框架中…...
VMware Workstation虚拟机网络配置及配置自动启动
目录 一、网络配置二、配置自动启动1.VMware 中配置虚拟机自启动2.系统服务中配置 VMware 服务自启动 一、网络配置 本文将虚拟机 IP 与主机 IP 设置为同一个网段。 点击 “编辑” -> “虚拟网络编辑器(N)…”: 点击 “更改设置”: 将 VMnet0 设置…...
智能语音机器人竞品调研
一、腾讯云-智能客服机器人 链接地址:智能客服机器人_在线智能客服_智能客服解决方案 - 腾讯云 二、阿里云-智能语音机器人 链接地址:智能对话机器人-阿里云帮助中心 链接地址:智能外呼机器人的业务架构_智能外呼机器人-阿里云帮助中心 三、火…...
【操作系统】进程的概念、组成、特征
概念组成 程序:静态的放在磁盘(外存)里的可执行文件(代码) 作业:代码+数据+申请(JCB)(外存) 进程:程序的一次执行过程。 …...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
