一文教你玩转 Apache Doris 分区分桶新功能|新版本揭秘
数据分片(Sharding)是分布式数据库分而治之 (Divide And Conquer) 这一设计思想的体现。过去的单机数据库在大数据量下往往面临存储和 IO 的限制,而分布式数据库则通过数据划分的规则,将数据打散分布至不同的机器或节点上,形成分布式存储,因此突破了单机存储空间和 IO 的瓶颈、使库表数据量可以无限拓展。
数据分片主要有范围分片或哈希分片这两种方式,而在实际数据库的实现中,往往呈现为分区和分桶两种形式。分区一般是按照时间或其他连续值对数据进行划分,在执行查询操作时可以通过分区裁剪过滤不必要的范围扫描,提升执行效率,同时也使得对分区数据的增删改等管理操作更为便捷。而分桶则是按照某个关键字执行哈希运算,将相同哈希值的数据放到一起,这样可以有效定位数据、避免数据倾斜。
在 Apache Doris 中,同样也遵从一定的数据分布规则。数据以关系表(Table)的形式进行呈现,会依次按照先分区(Partition)、再分桶(Bucket)的方式划分,最终在同一个分桶中的数据会形成数据分片(Tablet)。Tablet 是 Apache Doris 中多副本高可用、集群间数据调度与均衡的最小物理存储单位。
图1:Table-Partition-Tablet 之间的关系
# 现状与问题
在 Doris 中,分区与分桶是如何创建的?我们以一个网站站点的建表实例说明分区与分桶的创建方式,该网站的站点建表语句如下:
-- 该表记录了某个时间点,在某个站点上各个用户的pv数据
CREATE TABLE demo.test_tbl(sdate DATE, -- 日期site INT, -- 站点idcity VARCHAR(64), -- 城市user VARCHAR(32) DEFAULT '', -- 用户名pv BIGINT -- pv量
) ENGINE=olap DUPLICATE KEY(sdate, site, city)
[PARTITION_DESC]
[BUCKET_DESC]
PROPERTIES ("replication_num" = "1");
其中 [PARTITION_DESC] 表示创建分区的详细语句,[BUCKET_DESC] 表示创建分桶的语句。
创建分区
Apache Doris 支持两种分区形式,List Partition 与 Range Partition。
List Partition
List Partition 相当于对分区的列值进行枚举,因此选择的分区列最好是有区分度的可枚举值,例如本例中的 city。根据 city 列的枚举值创建多个 List Partition,则 PARTITION_DESC
可以写为:
-- 以city作为分区列,创建华北、东北、华中、西南等分区
PARTITION BY LIST(city)
(PARTITION `p_huabei` VALUES IN ("beijing", "tianjin", "shijiazhuang"),PARTITION `p_dongbei` VALUES IN ("shenyang", "dalian"),PARTITION `p_huazhong` VALUES IN ("wuhan", "changsha")PARTITION `p_xinan` VALUES IN ("chengdu", "chongqing")
)
Range Partition
创建 Range partition 一般使用时间列,Range Partition 又可以分为静态和动态两种方式:
- 静态 Range Partition
此类 Partition 的创建会生成一个左闭右开的区间,定义一个分区只需要指定右边界,该分区的左边界由上一个分区的右边界确定,PARTITION_DESC
可以写为:
-- 以sdate这个时间列作为分区列,
-- 日期处于[min, 2023-01-01)的数据,都放到名为p2022的分区下;
-- 日期处于[2023-01-01, 2023-01-02)的数据,都放到名为p20230101的分区下;
-- 日期处于[2023-01-02, 9999-12-31)的数据,都放到名为pmax的分区下;
PARTITION BY RANGE(sdate)
(PARTITION `p2022` VALUES LESS THAN ("2023-01-01"),PARTITION `p20230101` VALUES LESS THAN ("2023-01-02"),PARTITION `pmax` VALUES LESS THAN ("9999-12-31")
)
可以看出,p20230101 这个分区的左边界由 p2022 分区的右边界确定,而 pmax 的左边界由 p20230101 的右边界确定。需注意的是,此处为了举例说明动态分区,使用了一个很大的边"9999-12-31",实际业务中很少会直接创建从 2023-01-02 到 9999-12-31 的分区。
- 动态 Range Partition
上述静态的分区需要手动指定边界,分区个数太多使用起来也不方便。动态 Range Partition 帮助我们解决了这个问题,只需指定一些分区的参数即可动态创建,PARTITION_DESC 相对更简单,只需指定哪个列作为分区列即可:
PARTITION BY RANGE(sdate)()
剩余参数需要在PARTITION
进行配置:
PROPERTIES ("dynamic_partition.enable" = "true","dynamic_partition.time_unit" = "DAY","dynamic_partition.start" = "-30","dynamic_partition.end" = "3","dynamic_partition.prefix" = "p","dynamic_partition.create_history_partition"="true","replication_num" = "1"
);
动态分区参数说明如下:
创建分桶
分桶在物理层面即数据分片(Tablet)。在数据表完成分区后,指定部分列作为分桶列,将这些列数据中相同哈希值的数据合到一起,形成了 Tablet。一个表中 Tablet 总数量 = 分区数(Partition num)x 分桶数(Bucket num)x 数据副本数(Replication_num)。
[BUCKET_DESC] 语句非常简单,只需要一句:
DISTRIBUTED BY HASH(site) BUCKETS 20
此时指定以 site 列的哈希值作为分桶,并且分桶个数设置为 20 个,需要注意的是这里的 20 仅作为示例,合适的分桶个数需要根据分区大小来确定。实际上单个分桶即 Tablet 的数据量理论上没有上下界,但建议在 1GB - 10GB 的范围内,即假设分区大小为 20GB,那么分桶个数设置为 10-20 个是合适的。
不足与思考
从以上对分区分桶的介绍,相信有不少用户和读者仍能发现其中一些不足之处:
-
分区数量过多的情况下,使用 List Partition 或者静态 Range Partition 会使得 SQL 较为繁琐,编写起来费时费力;
-
若是使用动态 Range Partition,则需要掌握多个参数,使用方式不友好且学习成本较高;而当存在大量历史冷数据来说,动态 Range Partition 只能指定单一粒度,无法灵活组合不同的分区粒度;
-
分桶个数的设置十分依赖用户对 Apache Doris 数据分布机制和业务数据本身的理解,使用门槛较高。不合理的分桶设置将对系统性能和稳定性造成一定程度冲击:分桶数太多将导致单个 Tablet 的数据量过小,数据聚合效果不佳、查询性能不能得到有效发挥,并且元数据管理压力大;个数太少则单个 Tablet 包含的数据量过大,不利于副本的迁移、补齐,且会增加 Schema Change 或者 Rollup 操作失败重试的代价。
# 批量分区与Auto Bucket的设计与实现
克服数据库的复杂性是 Apache Doris 一直追求的目标之一,针对以上分区分桶存在的易用性问题,在 Apache Doris 最新的版本中已经得到解决。
在 Apache Doris 1.2.1 版本中,我们新增了批量创建分区功能,简洁的语法和灵活的使用方式让批量创建历史分区更加得心应手;而针对分桶设置带来的学习成本,Apache Doris 在即将发布的 1.2.2 版本中新增了 Auto Bucket 自动分桶推算功能,分桶个数不再依赖于人工设置,通过规则的智能计算即可保证合理的数据划分,降低用户学习成本的同时还可以最大化提升用户开发效率。
批量创建分区
批量创建分区功能在前期充分调研了用户的需求,本着简洁、强大、易用的设计目标,将设计核心锁定在几个要素中:
-
时间区间范围(会考虑开闭问题)
-
时间跨度(即每个分区的时间维度的大小)
-
时间单位(年、月、日、时、周等)
结合前面提到的网站站点模型,假设其数据包含从几年前直到现在的全量信息,想要将十年内的数据按每一天一个分区进行创建。在批量分区功能中,PARTITION_DESC
只需要一句,并且不用在PARTITION
中设置分区相关参数:
-- 当然,分区创建个数受到max_multi_partition_num参数控制,该值默认为4096,有需求可以修改
PARTITION BY RANGE(sdate)
(FROM ("2013-01-01") TO ("2023-01-01") INTERVAL 1 DAY
)从这个 case 来看,批量分区功能的语法更为简洁,但该功能的易用性和灵活性远不止于此。
从这个 case 来看,批量分区功能的语法更为简洁,但该功能的易用性和灵活性远不止于此。
假设有另一批数据:公司前几年的数据量较大且为冷数据,故可以将一年的数据合到一个分区里面;而后来因为业务迅速发展,需要将每一月的数据作为一个分区;随着公司业务进一步发展,按月分区已经不能满足快速增长的数据需求,需要按周进行分区;……;时至今日,公司每天产生海量数据,可能需要按小时分区才能符合需求。根据这个场景,不难写出批量分区创建的 PARTITION_DESC:
-- 此处需要注意,如果要使用小时级别的分区,则分区列必须是datetime类型
-- 同样的,分区创建个数也受到max_multi_partition_num参数控制
PARTITION BY RANGE(sdate)
(FROM ("2000-01-01") TO ("2021-01-01") INTERVAL 1 YEAR,FROM ("2021-01-01") TO ("2022-01-01") INTERVAL 1 MONTH,FROM ("2022-01-01") TO ("2023-01-01") INTERVAL 1 WEEK,FROM ("2023-01-01") TO ("2023-02-01") INTERVAL 1 DAY,FROM ("2023-02-01 00") TO ("2099-12-31 23") INTERVAL 1 HOUR
)
除了上述不同时间粒度的分区可以灵活组合外,还可以将静态 Range Partition 和批量分区功能结合起来。例如需要将该公司 2022-01-01 到 2023-01-01 的数据按天创建分区,2022-01-01 之前的数据归到一个名为"pold"分区中,我们可以将静态分区和批量分区组合起来,PARTITION_DESC如下:
PARTITION BY RANGE(sdate)
(PARTITION pold VALUES LESS THAN ("2022-01-01"),FROM ("2022-01-01") TO ("2023-01-01") INTERVAL 1 DAY
)
批量分区创建功能支持不同时间粒度,其语法简洁有力,且各种类型分区可以灵活组合,在面对大量历史分区和部分特殊分区的需求时,该功能显得游刃有余,可以极大提高开发效率。
批量分区功能 PR:https://github.com/apache/doris/pull/13772
Auto Bucket 自动分桶推算
以往创建分桶时需要手动设定分桶数,而自动分桶推算功能是 Apache Doris 可以动态地推算分桶个数,使得分桶数始终保持在一个合适范围内,让用户不再操心桶数的细枝末节。
首先说明一点,为了方便阐述该功能,该部分会将桶拆分为两个时期的桶,即初始分桶以及后续分桶。(这里的初始和后续只是本文为了描述清楚该功能而采用的术语,Apache Doris 分桶本身没有初始和后续之分)
从上文中创建分桶一节我们知道,BUCKET_DESC
非常简单,但是需要指定分桶个数;而在自动分桶推算功能上,BUCKET_DESC
的语法直接将分桶数改成"Auto",并新增一个 Properties 配置即可:
-- 旧版本指定分桶个数的创建语法
DISTRIBUTED BY HASH(site) BUCKETS 20-- 新版本使用自动分桶推算的创建语法
DISTRIBUTED BY HASH(site) BUCKETS AUTO
properties("estimate_partition_size" = "100G")
新增的配置参数estimate_partition_size
表示一个单分区的数据量。该参数是可选的,如果没有给出则 Doris 会将 estimate_partition_size 的默认值取为 10GB。
从上文中已经得知,一个分桶在物理层面就是一个Tablet,为了获得最好的性能,建议 Tablet 的大小在1GB - 10GB 的范围内。那么自动分桶推算是如何保证 Tablet 大小处于这个范围内的呢?总结起来不外乎几个原则:
-
若是整体数据量较小,则分桶数不要设置过多
-
若是整体数据量较大,则应使桶数跟总的磁盘块数相关,充分利用每台 BE 机器和每块磁盘的能力
初始分桶推算
从原则出发,理解自动分桶推算功能的详细逻辑就变得简单了:
首先来看初始分桶:
1. 先根据数据量得出一个桶数 N。首先使用 estimate_partition_size 的值除以 5(按文本格式存入 Doris 中有 5 比 1 的数据压缩比计算),得到的结果为:
-
-
< 100MB,则取 N=1
-
< 1GB,则取 N=2
-
>= 1GB,则每一个 GB 一个分桶
-
2. 根据 BE 节点数以及每个 BE 节点的磁盘容量,计算出桶数 M。其中每个 BE 节点算 1,每 50G 的磁盘容量算 1,那么 M 的计算规则为:M = BE 节点数 *( 一块磁盘块大小 / 50GB) * 磁盘块数,例如有 3 台 BE,每台 BE 都有 4 块 500GB 的磁盘,那么 M = 3 * (500GB / 50GB) * 4 = 120
3. 得到最终的分桶个数计算逻辑:
-
-
先计算一个中间值 x = min(M, N, 128),
-
如果 x < N并且x < BE节点个数,则最终分桶为 y 即 BE 节点个数;否则最终分桶数为 x
-
上述过程伪代码表现形式为:
int N = 计算N值;
int M = 计算M值;int y = BE节点个数;
int x = min(M, N, 128);if (x < N && x < y) {return y;
}
return x;
有了上述算法,咱们再引入一些例子来更好地理解这部分逻辑:
case 1:
数据量 100 MB,10 台 BE 机器,2TB * 3 块盘
数据量 N = 1
BE 磁盘 M = 10 * (2TB/50GB) * 3 = 1230
x = min(M, N, 128) = 1
最终: 1
case 2:
数据量 1GB, 3 台 BE 机器,500GB * 2 块盘
数据量 N = 2
BE 磁盘 M = 3 * (500GB/50GB) * 2 = 60
x = min(M, N, 128) = 2
最终: 2
case 3:
数据量 100GB,3 台 BE 机器,500GB * 2 块盘
数据量 N = 20
BE 磁盘 M = 3 * (500GB/50GB) * 2 = 60
x = min(M, N, 128) = 20
最终: 20
case 4:
数据量 500GB,3 台 BE 机器,1TB * 1 块盘
数据量 N = 100
BE 磁盘 M = 3 * (1TB /50GB) * 1 = 60
x = min(M, N, 128) = 63
最终: 63
case 5:
数据量 500GB,10 台 BE 机器,2TB * 3 块盘
数据量 N = 100
BE 磁盘 M = 10 * (2TB / 50GB) * 3 = 1230
x = min(M, N, 128) = 100
最终: 100
case 6:
数据量 1TB,10 台 BE 机器,2TB * 3 块盘
数据量 N = 205
BE 磁盘 M = 10 * (2TB / 50GB) * 3 = 1230
x = min(M, N, 128) = 128
最终: 128
case 7:
数据量 500GB,1 台 BE 机器,100TB * 1 块盘
数据量 N = 100
BE 磁盘 M = 1 * (100TB / 50GB) * 1 = 2048
x = min(M, N, 128) = 100
最终: 100
case 8:
数据量 1TB, 200 台 BE 机器,4TB * 7 块盘
数据量 N = 205
BE 磁盘 M = 200 * (4TB / 50GB) * 7 = 114800
x = min(M, N, 128) = 128
最终: 200
可以看到,详细逻辑与原则是匹配的。
后续分桶推算
上述是关于初始分桶的计算逻辑,后续分桶数因为已经有了一定的分区数据,可以根据已有的分区数据量来进行评估。后续分桶数会根据最多前 7 个分区数据量的 EMA[1](短期指数移动平均线)值,作为estimate_partition_size
进行评估。此时计算分桶有两种计算方式,假设以天来分区,往前数第一天分区大小为 S7,往前数第二天分区大小为 S6,依次类推到 S1;
-
如果 7 天内的分区数据每日严格递增,则此时会取趋势值
有6个delta值,分别是
S7 - S6 = delta1,
S6 - S5 = delta2,
...
S2 - S1 = delta6
由此得到平均的delta值:
avg_delta = (delta1 + delta2 + ... + delta6) / 6 = (S7 - S1) / 6
那么,今天的estimate_partition_size = S7 + avg_delta
-
非第一种的情况,此时直接取前几天的 EMA 平均值
今天的 estimate_partition_size = EMA(S1, ..., S7)
根据上述算法,初始分桶个数以及后续分桶个数都能被计算出来。跟之前只能指定固定分桶数不同,由于业务数据的变化,有可能前面分区的分桶数和后面分区的分桶数不一样,这对用户是透明的,用户无需关心每一分区具体的分桶数是多少,而这一自动推算的功能会让分桶数更加合理。
自动分桶推算功能 PR:https://github.com/apache/doris/pull/15250
效果
当我们有了合适的分区分桶时,导入数据导到 Doris 后,数据会依照建表语句中的分区分桶列进行存储。上述网站站点数据的存储示例如图示:
图2:Doris 分区分桶后的数据存储
此时如果执行 SQL 查询:
select * from test_tbl where sdate = "2020-03-23" and site = 1
根据谓词 sdate = "2020-03-23" 可以定位到分区 p20200323,谓词 site = 1 能定位到该分区下的 bucket_1。假设有 30 天数据,自动分桶推算得到的分桶个数为 20 个。则经过明确的分区分桶谓词下推,则可以将数据全表扫描量变为原来的 1/600(30 天*20 个桶 = 600),极大减少了数据的扫描范围、提高了查询的效率。
# 总结
整体来看,批量创建分区功能语法简洁有力,解决了用户针对大量历史数据分区创建的难题,既避免了手动创建大量分区的低效语法,又避免了动态分区大量参数的学习使用成本,且方式灵活多变、随意搭配组合各种类型的分区,大大提升了 Doris 在建表过程中的易用性。自动分桶推断功能智能高效,用户不需再关心分桶的细枝末节,系统自动帮助用户扩缩不同分区的分桶数,真正做到桶随业务变,降低学习成本的同时更是提升了查询效率。
在与社区用户持续沟通中,我们也不断收获着许多新的需求,例如分区列为非时间列等,因此后续我们仍将继续完善对其他分区列的支持,例如数字分区列的批量创建等。最后,我们期待倾听更多用户的声音,在不断回馈用户以极简易用的使用体验的同时,也期待有更多人参与到 Apache Doris 的建设中来,欢迎你的加入!
相关文章:

一文教你玩转 Apache Doris 分区分桶新功能|新版本揭秘
数据分片(Sharding)是分布式数据库分而治之 (Divide And Conquer) 这一设计思想的体现。过去的单机数据库在大数据量下往往面临存储和 IO 的限制,而分布式数据库则通过数据划分的规则,将数据打散分布至不同的机器或节点上…...

数据挖掘,计算机网络、操作系统刷题笔记54
数据挖掘,计算机网络、操作系统刷题笔记54 2022找工作是学历、能力和运气的超强结合体,遇到寒冬,大厂不招人,可能很多算法学生都得去找开发,测开 测开的话,你就得学数据库,sql,orac…...

将数组中的每个元素四舍五入到指定的精度numpy.rint()
【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 将数组中的每个元素 四舍五入到指定的精度 numpy.rint() 选择题 请问np.rint(a)的输出结果是? import numpy as np anp.array([-1.72,-1.3,0.37,2.4]) print("【显示】a:\n…...

Web安全之服务器端请求伪造(SSRF)类漏洞详解及预防
如何理解服务器端请求伪造(SSRF)类漏洞当服务器向用户提交的未被严格校验的URL发起请求的时候,就有可能会发生服务器端请求伪造(SSRF,即Server-Side Request Forgery)攻击。SSRF是由攻击者构造恶意请求URL&…...

LeetCode:239. 滑动窗口最大值
239. 滑动窗口最大值 给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例 1: 输入:nums [1,3,-…...

JS 函数参数(动态参数、剩余参数)
需求:求和函数 传入不同实参 求和出来1.动态参数 arguments 只存在于函数内function getSum() {//arguments 获取传递的所有参数 是一个伪数组let num 0for(let i0;i<arguments.length;i){num arguments[i]}return num}//调用console.log(getSum(1,2,3))consol…...

365天深度学习训练营-第J3周:DenseNet算法实战与解析
目录 一、前言 二、论文解读 1、DenseNet的优势 2、设计理念 3、网络结构 4、与其他算法进行对比 三、代码复现 1、使用Pytorch实现DenseNet 2、使用Tensorflow实现DenseNet网络 四、分析总结 一、前言 🍨 本文为🔗365天深度学习训练营 中的学习…...

Parisland NFT 作品集
该作品集用来自 Parisland 体验,共包含 11 个 NFT 资产,把你的土地装扮成一个眼花缭乱的热带天堂吧! 登上芭黎丝的爱情船和戴上豪华的螺旋爱情戒指,成为她在数位世界举办的真人秀的一部分吧!该系列还包含两个传奇级别的…...

uniapp: 基础开发官网文档
1、uniapp官网文档:https://uniapp.dcloud.net.cn/component/2、uView跨端UI组件库:http://v1.uviewui.com/components/intro.html3、lunch-request(类似axios的请求库):https://www.quanzhan.co/luch-request/handboo…...

mybatis中配置连接池的原理介绍分析
1.连接池:我们在实际开发中都会使用连接池。因为它可以减少我们获取连接所消耗的时间。2、mybatis中的连接池mybatis连接池提供了3种方式的配置:配置的位置:主配置文件SqlMapConfig.xml中的dataSource标签,type属性就是表示采用何…...

二叉树——路径总和
路径总和 链接 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。 叶子节点…...

WebDAV之π-Disk派盘+文件管理器
文件管理器 支持WebDAV方式连接π-Disk派盘。 推荐一款iOS上的免费文件管理器新秀。 文件管理器这是一款功能强大的文件管理工具,支持zip,rar,7z等压缩包的解压和压缩,支持小说,漫画,视频下载及播,极大提升日常办公,娱乐,文件管理的工作效率,使得文档的归档和管理随心…...

form表单单输入框回车提交事件处理
问题 form表单中如果只有一个输入框,在输入时按Enter回车键会出发默认事件自动提交表单,该交互是同步发生的,会导致页面刷新。 解决思路 有三种解决思路: 1. 增加input输入框的数量 如果form表单中不止一个input输入框&#…...

c++常用stl算法
1、头文件 这些算法通常包含在头文件<algorithm> <functional> <numeric>中。 2、常用遍历算法 for_each(v.begin(),v.end(), 元素处理函数/仿函数) 注意:在使用transform转存时,目标容器需要提取开辟合适的空间。 void printfunc(…...

非对称密钥PKCS#1和PKCS#8格式互相转换(Java)
目录一、序言二、代码示例1、Maven依赖2、工具类封装三、测试用例1、密钥文件2、公私钥PKCS1和PKCS8格式互相转换一、序言 之前在 《前后端RSA互相加解密、加签验签、密钥对生成》 中提到过PKCS#1格式和PKCS#8格式密钥的区别以及如何生成密钥。实际有些场景中有可能也会涉及到…...

java获取当前时间的方法:LocalDateTime、Date、Calendar,以及三者的比较
文章目录前言一、LocalDateTime1.1 获取当前时间LocalDate.now()1.2 获取当前时间的年、月、日、时分秒localDateTime.getYear()……1.3 给LocalDateTime赋值LocalDateTime.of()1.4 时间与字符串相互转换LocalDateTime.parse()1.5 时间运算——加上对应时间LocalDateTime.now()…...

npm link
正文npm link的用法假如我们想自己开发一个依赖包,以便在多个项目中使用。一种可行的方法,也是npm给我们提供的标准做法,那就是我们独立开发好这个 "依赖包",然后将它直接发布到 npm镜像站 上去,等以后想在其…...

Docker 如何配置镜像加速
Docker 镜像加速 国内从 DockerHub 拉取镜像有时会遇到困难,此时可以配置镜像加速器。Docker 官方和国内很多云服务商都提供了国内加速器服务,例如: 科大镜像:https://docker.mirrors.ustc.edu.cn/网易:https://hub-…...

阅读笔记7——Focal Loss
一、提出背景 当前一阶的物体检测算法,如SSD和YOLO等虽然实现了实时的速度,但精度始终无法与两阶的Faster RCNN相比。是什么阻碍了一阶算法的高精度呢?何凯明等人将其归咎于正、负样本的不平衡,并基于此提出了新的损失函数Focal L…...

ZCMU--5009: 龙虎斗
轩轩和开开正在玩一款叫《龙虎斗》的游戏,游戏的棋盘是一条线段,线段上有n个兵营(自左至右编号1~n),相邻编号的兵营之间相隔1厘米,即棋盘为长度为n-1厘米的线段。i号兵营里有ci位工兵。 下面图1为n 6的示例: 轩轩在左侧…...

创建项目(React+umi+typeScript)
项目框架搭建的方式react脚手架Ant-design官网一、安装方式npm二、安装方式yarn三、安装方式umi devreact脚手架 命令行: npx create-react-app myReactName项目目录结构: 浏览器运行,端口号3000: Ant-design官网 一、安装方…...

FISCO BCOS(二十七)———java操作WeBase
一、搭建fiscobcos环境 1.1、安装jdk1.8 https://blog.csdn.net/weixin_46457946/article/details/1232435131.2、安装mysql https://blog.csdn.net/weixin_46457946/article/details/1232447361.3、安装python https://blog.csdn.net/weixin_46457946/article/details/123…...

失眠时还在吃它?有风险,你了解过吗
失眠,是当代人的通病。所以解决失眠也成了刚需,市面上开始出现各种助眠产品。有商业机构调查发现,62%的90后消费者曾买过助眠产品,其中人气选手就是褪黑素。褪黑素本身就是人体天然存在的,与睡眠有关的物质,…...

星戈瑞收藏Sulfo-CY7 amine/NHS ester/maleimide小鼠活体成像染料标记反应
关于小鼠活体成像,就一定要提到CY活性染料标记反应: 用不同的活性基团的Cyanine菁染料和相应的活性基团的生物分子或小分子药物发生反应,链接到一起。 根据需要标记的抗原、抗体、酶、多肽等分子所带的可标记基团的种类(氨基、醛…...

守护最后一道防线:Coremail邮件安全网关推出邮件召回功能
根据Coremail邮件安全大数据中心2022年Q4季报显示,2021年CAC识别钓鱼邮件1.81亿,2022年上升至2.25亿,增幅高达24.1%。 这表明2022年平均每天有61万7088封钓鱼邮件被接收及发出,企业用户面临潜在经济损失不可估量。 尤其是活跃至今…...

Python实战之小说下载神器(二)整本小说下载:看小说不用这个程序,我实在替你感到可惜*(小说爱好者必备)
前言 这次的是一个系列内容给大家讲解一下何一步一步实现一个完整的实战项目案例系列之小说下载神器(二)(GUI界面化程序) 单章小说下载保存数据——整本小说下载 你有看小说“中毒”的经历嘛?小编多多少少还是爱看小说…...
ChatGPT三个关键技术
情景学习(In-context learning) 对于一些LLM没有见过的新任务,只需要设计一些任务的语言描述,并给出几个任务实例,作为模型的输入,即可让模型从给定的情景中学习新任务并给出满意的回答结果。这种训练方式能…...

考试系统 (springboot+vue前后端分离)
系统图片 下载链接 地址: http://www.gxcode.top/code 介绍 一款多角色在线培训考试系统,系统集成了用户管理、角色管理、部门管理、题库管理、试题管理、试题导入导出、考试管理、在线考试、错题训练等功能,考试流程完善。 技术栈 Spr…...

ChatGPT告诉你:项目管理能干到60岁吗?
早上好,我是老原。这段时间最火的莫过于ChatGPT,从文章创作到论文写作,甚至编程序,简直厉害的不要不要的。本以为过几天热度就自然消退了,结果是愈演愈烈,热度未减……大家也从一开始得玩乐心态,…...

Python自动化测试框架【Allure-pytest功能特性介绍】
Python自动化测试框架【Allure-pytest功能特性介绍】 目录:导读 前言 生成报告 测试代码 目录结构 Allure特性 Environment Categories Fixtures and Finalizers allure.attach 总结 写在最后 前言 Allure框架是一个灵活的轻量级多语言测试报告工具&am…...