当前位置: 首页 > news >正文

深入了解Python和OpenCV:图像的卡通风格化

前言

当今数字时代,图像处理和美化已经变得非常普遍。从社交媒体到个人博客,人们都渴望分享独特且引人注目的图片。本文将介绍如何使用Python编程语言和OpenCV库创建令人印象深刻的卡通风格图像。卡通风格的图像具有艺术性和创意,它们可以用于图像编辑、创意表达以及增加娱乐价值。

文章目录

    • 前言
      • 1. 准备工作
      • 2. 读取和显示图像
      • 3. 创建边缘掩膜
      • 4. 颜色量化
      • 5. 图像处理和效果增强
      • 6. 完整代码
    • 总结

1. 准备工作

在开始之前,您需要安装以下必要的库:

  • OpenCV (cv2)
  • NumPy

如果您还没有安装这些库,可以使用pip进行安装。

pip install opencv-python numpy

2. 读取和显示图像

首先,我们将介绍如何使用OpenCV读取图像文件并在窗口中显示它们。这是我们处理图像的第一步。

# 读取文件
def read_file(filename: str) -> np.ndarray:try:img = cv2.imread(filename)if img is None:raise ValueError("Invalid file path or file format.")return imgexcept:raise ValueError("Invalid file path or file format.")# 显示图片
def display_image(img: np.ndarray, window_name: str) -> None:cv2.imshow(window_name, img)cv2.waitKey()

在这个步骤中,我们定义了一个名为read_file的函数,它接受一个文件名作为参数,并返回一个NumPy数组表示的图像。如果文件路径无效或图像格式不受支持,函数将引发异常。
我们定义了一个名为display_image的函数,它接受两个参数:要显示的图像和窗口的名称。函数将图像显示在指定的窗口中,并等待用户按下任意键后关闭窗口。这个简单的步骤允许我们在进行后续处理之前,查看原始照片的外观。

3. 创建边缘掩膜

接下来,我们将图像转化为卡通风格的第一步是创建边缘掩膜。我们将使用边缘检测技术来实现这一目标。

# 边缘掩膜
def edge_mask(image: np.ndarray, line_size: int, blur_value: int) -> np.ndarray:if not isinstance(line_size, int) or not isinstance(blur_value, int) or line_size < 1 or blur_value < 1:raise ValueError("Invalid value for 'line_size' or 'blur_value' parameter. Must be a positive integer.")gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray_blur = cv2.medianBlur(gray, blur_value)edges = cv2.adaptiveThreshold(gray_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, line_size, blur_value)return edges

在这个步骤中,我们定义了一个名为edge_mask的函数,它接受三个参数:图像、线条大小(控制边缘粗细)和模糊程度。函数将图像转换为灰度图,然后应用中值模糊和自适应阈值处理,以创建边缘掩膜。

4. 颜色量化

卡通风格的图像通常具有较少的颜色。我们将使用K-Means聚类算法来减少图像中的颜色数量。

# 颜色量化
def color_quantization(image: np.ndarray, num_colors: int) -> np.ndarray:if not isinstance(num_colors, int) or num_colors < 1:raise ValueError("Invalid value for 'num_colors' parameter. Must be a positive integer.")# 转换图片data = np.float32(image).reshape((-1, 3))# 设置KMeans聚类参数kmeans_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 20, 0.001)flags = cv2.KMEANS_RANDOM_CENTERS# 执行KMeans聚类_, labels, centers = cv2.kmeans(data, num_colors, None, kmeans_criteria, 10, flags)centers = np.uint8(centers)processed_image = centers[labels.flatten()]processed_image = processed_image.reshape(image.shape)# 应用颜色增强hsv_image = cv2.cvtColor(processed_image, cv2.COLOR_BGR2HSV)hsv_image[:, :, 1] = hsv_image[:, :, 1] * 1.5  # 增强饱和度enhanced_image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)return enhanced_image

在这个步骤中,我们定义了一个名为color_quantization的函数,它接受两个参数:图像和要使用的颜色数量。函数首先将图像转换为数据矩阵,然后使用K-Means聚类算法将图像颜色量化为指定数量的颜色。最后,我们增强了图像的饱和度,以使颜色更加生动。

5. 图像处理和效果增强

在这一步骤中,我们将应用一些图像处理技术,如双边滤波,以增强最终的卡通效果图像。

def resize_crop(image):h, w, c = np.shape(image)if min(h, w) > 720:if h > w:h, w = int(720 * h / w), 720else:h, w = 720, int(720 * w / h)image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)h, w = (h // 8) * 8, (w // 8) * 8image = image[:h, :w, :]return image# 图像处理和效果增强
def cartoonize(load_folder, save_folder):name_list = os.listdir(load_folder)for name in name_list:try:load_path = os.path.join(load_folder, name)save_path = os.path.join(save_folder, name)if not save_path.endswith('.jpg'):raise ValueError("Invalid file format. Must be a '.jpg' file.")image = cv2.imread(load_path)image = resize_crop(image)display_image(image, "Image")# 设置边缘掩膜参数并应用line_size = 7blur_value = 7edges = edge_mask(image, line_size, blur_value)display_image(edges, "Edges")# 执行颜色量化num_colors = 9processed_image = color_quantization(image, num_colors)display_image(processed_image, "Processed_image")# 应用双边滤波blurred = cv2.bilateralFilter(processed_image, d=9, sigmaColor=200, sigmaSpace=200)display_image(blurred, "Blurred")# 应用掩膜cartoonized_image = cv2.bitwise_and(blurred, blurred, mask=edges)display_image(cartoonized_image, "Cartoonized Image")cv2.imwrite(save_path, cartoonized_image)except:print('cartoonize {} failed'.format(load_path))

在这个步骤中,我们首先调整图像的大小和裁剪,以确保它符合处理的要求。然后,我们依次应用边缘掩膜、颜色量化、双边滤波和最后的掩膜应用,将图像转换成卡通画风。

这是整个卡通化过程的关键部分,通过这些步骤,您可以将任何普通照片转换成具有卡通风格的艺术品。在接下来的文章中,我们将展示如何使用这些代码来卡通化您自己的照片。

6. 完整代码

# -*- coding = utf-8 -*-
"""
# @Time : 2023/9/22 20:18
# @Author : FriK_log_ff 374591069
# @File : newmyway.py
# @Software: PyCharm
# @Function: 请输入项目功能
"""
import cv2
import numpy as np
import os# 读取文件
def read_file(filename: str) -> np.ndarray:try:img = cv2.imread(filename)if img is None:raise ValueError("Invalid file path or file format.")return imgexcept:raise ValueError("Invalid file path or file format.")# 显示图片
def display_image(img: np.ndarray, window_name: str) -> None:cv2.imshow(window_name, img)cv2.waitKey()# 边缘掩膜
def edge_mask(image: np.ndarray, line_size: int, blur_value: int) -> np.ndarray:if not isinstance(line_size, int) or not isinstance(blur_value, int) or line_size < 1 or blur_value < 1:raise ValueError("Invalid value for 'line_size' or 'blur_value' parameter. Must be a positive integer.")gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray_blur = cv2.medianBlur(gray, blur_value)edges = cv2.adaptiveThreshold(gray_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, line_size, blur_value)return edges# 颜色量化
def color_quantization(image: np.ndarray, num_colors: int) -> np.ndarray:if not isinstance(num_colors, int) or num_colors < 1:raise ValueError("Invalid value for 'num_colors' parameter. Must be a positive integer.")# 转换图片data = np.float32(image).reshape((-1, 3))# 设置KMeans聚类参数kmeans_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 20, 0.001)flags = cv2.KMEANS_RANDOM_CENTERS# 执行KMeans聚类_, labels, centers = cv2.kmeans(data, num_colors, None, kmeans_criteria, 10, flags)centers = np.uint8(centers)processed_image = centers[labels.flatten()]processed_image = processed_image.reshape(image.shape)# 应用颜色增强hsv_image = cv2.cvtColor(processed_image, cv2.COLOR_BGR2HSV)hsv_image[:, :, 1] = hsv_image[:, :, 1] * 1.5  # 增强饱和度enhanced_image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)return enhanced_imagedef resize_crop(image):h, w, c = np.shape(image)if min(h, w) > 720:if h > w:h, w = int(720 * h / w), 720else:h, w = 720, int(720 * w / h)image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)h, w = (h // 8) * 8, (w // 8) * 8image = image[:h, :w, :]return image# 上传文件
def cartoonize(load_folder, save_folder):name_list = os.listdir(load_folder)for name in name_list:try:load_path = os.path.join(load_folder, name)save_path = os.path.join(save_folder, name)if not save_path.endswith('.jpg'):raise ValueError("Invalid file format. Must be a '.jpg' file.")image = cv2.imread(load_path)image = resize_crop(image)display_image(image, "Image")# 设置边缘掩膜参数并应用line_size = 7blur_value = 7edges = edge_mask(image, line_size, blur_value)display_image(edges, "Edges")# 执行颜色量化num_colors = 9processed_image = color_quantization(image, num_colors)display_image(processed_image, "Processed_image")# 应用双边滤波blurred = cv2.bilateralFilter(processed_image, d=9, sigmaColor=200, sigmaSpace=200)display_image(blurred, "Blurred")# 应用掩膜cartoonized_image = cv2.bitwise_and(blurred, blurred, mask=edges)display_image(cartoonized_image, "Cartoonized Image")cv2.imwrite(save_path, cartoonized_image)except:print('cartoonize {} failed'.format(load_path))if __name__ == '__main__':load_folder = 'test_images'save_folder = 'cartoonized_images'if not os.path.exists(save_folder):os.mkdir(save_folder)cartoonize(load_folder, save_folder)

总结

在本文中,我们探讨了如何使用Python和OpenCV库创建卡通风格的图像。通过一系列图像处理步骤,我们将普通照片转化为有趣和具有创意的卡通风格图像。这个过程涵盖了图像读取、边缘检测、颜色量化、图像处理和效果增强等关键步骤。

卡通风格图像的制作涉及多个步骤,但通过掌握这些技巧,您可以自由发挥创造力,为照片增添新的趣味性。以下是本文中使用的一些关键技术的简要回顾:

  • 图像读取和显示: 我们使用OpenCV库来读取图像文件并在窗口中显示它们。这是开始图像处理的第一步。

  • 边缘掩膜: 为了创建卡通风格,我们使用了边缘检测技术,将图像中的边缘突出显示。

  • 颜色量化: 卡通图像通常包含较少的颜色。我们使用K-Means聚类来减少图像中的颜色数量,从而实现卡通风格的色彩。

  • 图像处理和效果增强: 我们应用了一些图像处理技术,例如双边滤波,以增强最终的卡通效果图像。

在完成所有处理步骤后,我们得到了有趣和独特的卡通风格图像。这个过程可以批量处理图像,使您能够轻松创建多个卡通化的照片。

希望本文对您有所帮助,能够启发您探索更多有趣的图像处理项目。 创造自己独特的卡通风格图像,让您的照片在社交媒体和网络上脱颖而出。

相关文章:

深入了解Python和OpenCV:图像的卡通风格化

前言 当今数字时代&#xff0c;图像处理和美化已经变得非常普遍。从社交媒体到个人博客&#xff0c;人们都渴望分享独特且引人注目的图片。本文将介绍如何使用Python编程语言和OpenCV库创建令人印象深刻的卡通风格图像。卡通风格的图像具有艺术性和创意&#xff0c;它们可以用…...

【算法挨揍日记】day06——1004. 最大连续1的个数 III、1658. 将 x 减到 0 的最小操作数

1004. 最大连续1的个数 III 1004. 最大连续1的个数 III 题目描述&#xff1a; 给定一个二进制数组 nums 和一个整数 k&#xff0c;如果可以翻转最多 k 个 0 &#xff0c;则返回 数组中连续 1 的最大个数 。 解题思路&#xff1a; 首先题目要我们求出的最多翻转k个0后&#x…...

华为云HECS安装docker

1、运行安装指令 yum install docker都选择y&#xff0c;直到安装成功 2、查看是否安装成功 运行版本查看指令&#xff0c;显示docker版本&#xff0c;证明安装成功 docker --version 或者 docker -v 3、启用并运行docker 3.1启用docker 指令 systemctl enable docker …...

力扣669 补9.16

最近大三上四天有早八&#xff0c;真的是受不了了啊&#xff0c;欧嗨呦&#xff0c;早上困如狗&#xff0c;然后&#xff0c;下午困如狗&#xff0c;然后晚上困如狗&#xff0c;尤其我最近在晚上7点到10点这个时间段看力扣&#xff0c;看得我昏昏欲睡&#xff0c;不自觉就睡了1…...

2023-9-22 没有上司的舞会

题目链接&#xff1a;没有上司的舞会 #include <cstring> #include <iostream> #include <algorithm>using namespace std;const int N 6010;int n; int happy[N]; int h[N], e[N], ne[N], idx; bool has_father[N];// 两个状态&#xff0c;选该节点或不选该…...

【HDFS】cachingStrategy的设置

org.apache.hadoop.hdfs.client.impl.BlockReaderFactory#getRemoteBlockReader: private BlockReader getRemoteBlockReader(Peer peer) throws IOException {int networkDistance = clientContext.getNetworkDistance(datanode);return BlockReaderRemote...

性能测试 —— 性能测试常见的测试指标 !

一、什么是性能测试 先看下百度百科对它的定义&#xff0c;性能测试是通过自动化的测试工具模拟多种正常、峰值以及异常负载条件来对系统的各项性能指标进行测试。 我们可以认为性能测试是&#xff1a;通过在测试环境下对系统或构件的性能进行探测&#xff0c;用以验证在生产环…...

【学习草稿】背包问题

一、01背包问题 图解详细解析 &#xff08;转载&#xff09; https://blog.csdn.net/qq_37767455/article/details/99086678 &#xff1a;Vi表示第 i 个物品的价值&#xff0c;Wi表示第 i 个物品的体积&#xff0c;定义V(i,j)&#xff1a;当前背包容量 j&#xff0c;前 i 个物…...

doxygen c++ 语法

c基本语法模板 以 /*! 开头, */ 结尾 /*!\关键字1\关键字2 */1 文件头部信息 /*! \file ClassA.h* \brief 文件说明 定义了类fatherA* \details This class is used to demonstrate a number of section commands.* \author John Doe* \author Jan Doe* \v…...

ChatGLM微调基于P-Tuning/LoRA/Full parameter(上)

1. 准备环境 首先必须有7个G的显存以上,torch >= 1.10 需要根据你的cuda版本 1.1 模型下载 $ git lfs install $ git clone https://huggingface.co/THUDM/chatglm-6b1.2 docker环境搭建 环境搭建 $ sudo docker pull slpcat/chatglm-6b:latest $ sudo docker run -it …...

BLE Mesh蓝牙mesh传输大数据包传输文件照片等大数据量通讯

1、BLE Mesh数据传输现状 BLE Mesh网络技术是低功耗蓝牙的一个进阶版&#xff0c;Mesh扩大了蓝牙在应用中的规模和范围&#xff0c;因为它同时支持超过三万个网络节点&#xff0c;可以跨越大型建筑物&#xff0c;不仅可以使得医疗健康应用更加方便快捷&#xff0c;还能监测像学…...

9.18 QT作业

mainwindow.h QT_BEGIN_NAMESPACE namespace Ui { class MainWindow; } QT_END_NAMESPACEclass MainWindow : public QMainWindow {Q_OBJECTpublic:MainWindow(QWidget *parent nullptr);~MainWindow();signals:void jump(); //自定义跳转信号函数private slots:vo…...

【100天精通Python】Day67:Python可视化_Matplotlib 绘动画,2D、3D 动画 示例+代码

1 绘制2D动画&#xff08;animation&#xff09; Matplotlib是一个Python绘图库&#xff0c;它提供了丰富的绘图功能&#xff0c;包括绘制动画。要绘制动画&#xff0c;Matplotlib提供了FuncAnimation类&#xff0c;允许您创建基于函数的动画。下面是一个详细的Matplotlib动画示…...

Linux内核源码分析 (B.x)Linux页表的映射

Linux内核源码分析 (B.x)Linux页表的映射 文章目录 Linux内核源码分析 (B.x)Linux页表的映射一、ARM32页表1、页表术语2、虚拟地址到物理地址转换3、一级页表项4、二级页表项 二、ARM64页表1、ARMv8-A架构2、4KB大小页4级映射 三、Linux内核中关于页表的函数和宏1、查询页表2、…...

机器学习(15)---代价函数、损失函数和目标函数详解

文章目录 一、各自定义二、各自详解三、代价函数和损失函数区别四、例题理解 一、各自定义 1. 代价函数&#xff1a;代价函数&#xff08;Cost Function&#xff09;是定义在整个训练集上的&#xff0c;是所有样本误差的平均&#xff0c;也就是损失函数的平均。它用于衡量模型在…...

计算机专业大学规划之双非

​ 亲爱的计算机专业大一学弟学妹们&#xff0c;欢迎来到充满挑战和机遇的大学校园&#xff01;在经历了小半年的大学生活后&#xff0c;是否会对自己的未来感到一些迷茫&#xff0c;借着前几天给我大一的妹妹聊天的机会&#xff0c;我想发表一下关于我的建议&#xff08;仅限个…...

2.策略模式

UML图 代码 main.cpp #include "Strategy.h" #include "Context.h"void test() {Context* pContext nullptr;/* StrategyA */pContext new Context(new StrategyA());pContext->contextInterface();/* StrategyB */pContext new Context(new Strat…...

算法通过村第七关-树(递归/二叉树遍历)黄金笔记|迭代遍历

文章目录 前言1. 迭代法实现前序遍历2. 迭代法实现中序遍历3. 迭代法实现后序遍历总结 前言 提示&#xff1a;在一个信息爆炸却多半无用的世界&#xff0c;清晰的见解就成了一种力量。 --尤瓦尔赫拉利《今日简史》 你是不是觉得上一关特别简单&#xff0c;代码少&#xff0c;背…...

MySQL数据库简介+库表管理操作+数据库用户管理

Mysql Part 1 一、数据库的基本概念1.1 使用数据库的必要性1.2 数据库基本概念1.2.1 数据&#xff08;Data&#xff09;1.2.2 表1.2.3 数据库1.2.4 数据库管理系统&#xff08;DBMS&#xff09;1.2.5 数据库系统 1.3 数据库的分类1.3.1 关系数据库 SQL1.3.2 非关系数据库 NoSQL…...

PyTorch实战:卷积神经网络详解+Python实现卷积神经网络Cifar10彩色图片分类

目录 前言 一、卷积神经网络概述 二、卷积神经网络特点 卷积运算 单通道&#xff0c;二维卷积运算示例 单通道&#xff0c;二维&#xff0c;带偏置的卷积示例 带填充的单通道&#xff0c;二维卷积运算示例 Valid卷积 Same卷积 多通道卷积计算 1.局部感知域 2.参数共…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

云安全与网络安全:核心区别与协同作用解析

在数字化转型的浪潮中&#xff0c;云安全与网络安全作为信息安全的两大支柱&#xff0c;常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异&#xff0c;并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全&#xff1a;聚焦于保…...

js 设置3秒后执行

如何在JavaScript中延迟3秒执行操作 在JavaScript中&#xff0c;要设置一个操作在指定延迟后&#xff08;例如3秒&#xff09;执行&#xff0c;可以使用 setTimeout 函数。setTimeout 是JavaScript的核心计时器方法&#xff0c;它接受两个参数&#xff1a; 要执行的函数&…...

CppCon 2015 学习:REFLECTION TECHNIQUES IN C++

关于 Reflection&#xff08;反射&#xff09; 这个概念&#xff0c;总结一下&#xff1a; Reflection&#xff08;反射&#xff09;是什么&#xff1f; 反射是对类型的自我检查能力&#xff08;Introspection&#xff09; 可以查看类的成员变量、成员函数等信息。反射允许枚…...