Linux内核源码分析 (B.x)Linux页表的映射
Linux内核源码分析 (B.x)Linux页表的映射
文章目录
- Linux内核源码分析 (B.x)Linux页表的映射
- 一、ARM32页表
- 1、页表术语
- 2、虚拟地址到物理地址转换
- 3、一级页表项
- 4、二级页表项
- 二、ARM64页表
- 1、ARMv8-A架构
- 2、4KB大小页+4级映射
- 三、Linux内核中关于页表的函数和宏
- 1、查询页表
- 2、判断页表项的状态
- 3、修改页表
- 四、研究实例
- 五、ARM32页表和Linux页表解惑
- 1、ARM32页表和Linux页表
- 2、ARM32的PTE页表项和Linux页表不一样
- 六、其他实例问题
一、ARM32页表
1、页表术语

- 在Linux内核源码中会用到PDG、PUD、PMF和PT等简称,但在ARM芯片手册上会使用L1、L2、L3等术语
2、虚拟地址到物理地址转换

- 针对两级级页表而言,这里的
L1索引和L2索引分别对应于PGD(全局目录)和PT(页表项) - ARM32中的一级页表项和二级页表项大小均为4个字节
3、一级页表项

- 如果只需要支持超级大段和段映射,那么只需要一级页表即可。如果要支持
4KB页面或64KB大页映射,那么需要用到二级页表。不同大小的映射,一级或二级页表中的页表项的内容也不一样
- 00:缺页,虚拟存储空间没有被映射到物理存储空间,因而访问该存储空间将产生缺页异常。
- 01:包含了粗粒度的二级页表的物理地址,它可以实现以大页和小页为单位的地址映射
- 10:段描述符(Section Descriptor),段描述符定义了对应的
1MB的虚拟存储空间的地址映射关系 - 11:包含了细粒度的二级页表的物理地址,
- 关于段映射,更多请看,其实段映射跟页表映射的流程是差不多的,博客里面的段内偏移地址可以类比于页表中的VPO(Virtual Page Offset),下面展示别的博客里的图。

4、二级页表项

二、ARM64页表
1、ARMv8-A架构

- 为什么不是64根地址线?
- 因为48根地址线就已经足够了(
2^48=256T),再增加地址线只会增加系统的复杂度
- 因为48根地址线就已经足够了(
2、4KB大小页+4级映射

三、Linux内核中关于页表的函数和宏
1、查询页表

2、判断页表项的状态

3、修改页表

四、研究实例


-
special mapping:特殊映射 Linux内核不希望页面参与页面管理的活动中
-
pgd指向第一级页表(页全局目录)的基址。
- ARM32不是只有两级页表吗,为什么要需要遍历这么多?


- ARM32的二级页表没有用到
PTE_SPECIAL标志位,而ARM64的三级页表中用到了。
五、ARM32页表和Linux页表解惑
1、ARM32页表和Linux页表





- 实现了两套平行页表
- HW(HardWare)页表 ,属于ARM32架构的页表
- SW(SoftWare)页表,属于Linux内核的页表

2、ARM32的PTE页表项和Linux页表不一样

- 缺页中断和页面回收的时候会讲
六、其他实例问题


相关文章:
Linux内核源码分析 (B.x)Linux页表的映射
Linux内核源码分析 (B.x)Linux页表的映射 文章目录 Linux内核源码分析 (B.x)Linux页表的映射一、ARM32页表1、页表术语2、虚拟地址到物理地址转换3、一级页表项4、二级页表项 二、ARM64页表1、ARMv8-A架构2、4KB大小页4级映射 三、Linux内核中关于页表的函数和宏1、查询页表2、…...
机器学习(15)---代价函数、损失函数和目标函数详解
文章目录 一、各自定义二、各自详解三、代价函数和损失函数区别四、例题理解 一、各自定义 1. 代价函数:代价函数(Cost Function)是定义在整个训练集上的,是所有样本误差的平均,也就是损失函数的平均。它用于衡量模型在…...
计算机专业大学规划之双非
亲爱的计算机专业大一学弟学妹们,欢迎来到充满挑战和机遇的大学校园!在经历了小半年的大学生活后,是否会对自己的未来感到一些迷茫,借着前几天给我大一的妹妹聊天的机会,我想发表一下关于我的建议(仅限个…...
2.策略模式
UML图 代码 main.cpp #include "Strategy.h" #include "Context.h"void test() {Context* pContext nullptr;/* StrategyA */pContext new Context(new StrategyA());pContext->contextInterface();/* StrategyB */pContext new Context(new Strat…...
算法通过村第七关-树(递归/二叉树遍历)黄金笔记|迭代遍历
文章目录 前言1. 迭代法实现前序遍历2. 迭代法实现中序遍历3. 迭代法实现后序遍历总结 前言 提示:在一个信息爆炸却多半无用的世界,清晰的见解就成了一种力量。 --尤瓦尔赫拉利《今日简史》 你是不是觉得上一关特别简单,代码少,背…...
MySQL数据库简介+库表管理操作+数据库用户管理
Mysql Part 1 一、数据库的基本概念1.1 使用数据库的必要性1.2 数据库基本概念1.2.1 数据(Data)1.2.2 表1.2.3 数据库1.2.4 数据库管理系统(DBMS)1.2.5 数据库系统 1.3 数据库的分类1.3.1 关系数据库 SQL1.3.2 非关系数据库 NoSQL…...
PyTorch实战:卷积神经网络详解+Python实现卷积神经网络Cifar10彩色图片分类
目录 前言 一、卷积神经网络概述 二、卷积神经网络特点 卷积运算 单通道,二维卷积运算示例 单通道,二维,带偏置的卷积示例 带填充的单通道,二维卷积运算示例 Valid卷积 Same卷积 多通道卷积计算 1.局部感知域 2.参数共…...
MapRdeuce工作原理
hadoop - (三)通俗易懂地理解MapReduce的工作原理 - 个人文章 - SegmentFault 思否 MapReduce架构 MapReduce执行过程 Map和Reduce工作流程 (input) ->map-> ->combine-> ->reduce-> (output) Map: Reduce...
完整指南:使用JavaScript从零开始构建中国象棋游戏
引言 中国象棋,又被称为国际象棋,是一款起源于中国的古老棋类游戏。本文旨在为大家提供一个简单明了的步骤,教你如何使用JavaScript从零开始构建这款经典的棋类游戏。 1. 游戏简介 在中国象棋中,两方各有一军队,包括…...
PG-DBA培训19:PostgreSQL高可用集群项目实战之Patroni
一、风哥PG-DBA培训19:PostgreSQL高可用集群项目实战之Patroni 课程目标: 本课程由风哥发布的基于PostgreSQL数据库的系列课程,本课程属于PostgreSQL主从复制与高可用集群阶段之PostgreSQL高可用集群项目实战之Patroni,学完本课…...
数据库管理-第105期 安装Database Valut组件(20230919)
数据库管理-第105期 安装Database Valut组件(20230919) 之前无论是是EXPDP还是PDB中遇到的一些问题,其实都跟数据库的DV(Database Valut)组件有关,因为目标库没有安装DV导致启动时会出现问题。 1 DV/OLS …...
企望制造ERP系统RCE漏洞 复现
文章目录 企望制造ERP系统RCE漏洞 复现0x01 前言0x02 漏洞描述0x03 影响平台0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议 企望制造ERP系统RCE漏洞 复现 0x01 前言 免责声明:请勿利用文章内的相关技术从事非法测试,由于传播…...
【unity小技巧】Unity 存储存档保存——PlayerPrefs、JsonUtility和MySQL数据库的使用
文章目录 前言PlayerPrefs一、基本介绍二、Demo三、优缺点 JsonUtility一、基本使用二、Demo三、优缺点 Mysql(扩展)完结 前言 游戏存档不言而喻,是游戏设计中的重要元素,可以提高游戏的可玩性,为玩家提供更多的自由和…...
2023-9-22 滑雪
题目链接:滑雪 #include <cstring> #include <algorithm> #include <iostream>using namespace std;const int N 310;int n, m; int h[N][N]; int f[N][N];int dx[4] {-1, 0, 1, 0}, dy[4] {0, 1, 0, -1};int dp(int x, int y) {int &v f…...
基于Yolov8的工业小目标缺陷检测(6):多检测头结合小缺陷到大缺陷一网打尽的轻量级目标检测器GiraffeDet,暴力提升工业小目标缺陷检测能力
💡💡💡本文改进:多头检测器结合大小缺陷一网打尽的GiraffeDet,进一步提升处理低分辨率图像和小物体等更困难的检测能力。 多头检测器+ GiraffeDet | 亲测在工业小目标缺陷涨点明显,原始mAP@0.5 0.679提升至0.734 收录专栏: 💡💡💡深度学习工业缺陷检测 :h…...
exe文件运行后无输出直接闪退如何找解决办法
一.搜索栏搜事件查看器 二.点开windows日志下的应用程序 三.找到错误处 四.搜索异常代码 点开有错误的详细信息,直接用搜索引擎搜索这个异常代码能大致判断是什么问题,给了一个解决思路,不至于不知道到底哪里出了问题...
OpenHarmony应用开发—ArkUI组件集合
介绍 本示例为ArkUI中组件、通用、动画、全局方法的集合。 效果预览 使用说明: 1.点击组件、通用、动画、全局方法四个按钮或左右滑动切换不同视图。 2.点击二级导航(如通用属性、通用事件等),若存在三级导航则展开三级导航&#…...
Linux(CentOS)安装msf
目录 一、安装MSF 1.1 在线安装 1.2 离线安装 二、安装Postgresql数据库 一、安装MSF 1.1 在线安装 需要挂梯子!挂完梯子需要reboot重启,多试几次就可以,国内网络我试了很久都不行。没条件没梯子的看1.2离线安装 cd /opt curl https://ra…...
工作几年还是悟不懂自动化测试的意义
【软件测试面试突击班】如何逼自己一周刷完软件测试八股文教程,刷完面试就稳了,你也可以当高薪软件测试工程师(自动化测试) 有人问:自动化测试的成本高效果差,那么自动化测试的意义在哪呢? 我…...
Redis面试问题三什么是缓存雪崩怎么解决
定义 缓存雪崩是因为大量的key设置了同一过期时间的导致在同一时间类缓存同时过期,而这时因为请求过来已经没有缓存了,DB压力大数据库崩溃了。 解决方法 我可以在设置过期时间的时候加一个随机时间,在1-5分钟那样可以分散过期时间…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
