【论文阅读】UniDiffuser: Transformer+Diffusion 用于图、文互相推理
而多模态大模型将能够打通各种模态能力,实现任意模态之间转化,被认为是通用式生成模型的未来发展方向。
最近看到不少多模态大模型的工作,有医学、金融混合,还有CV&NLP。
今天介绍: One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale
论文链接:https://ml.cs.tsinghua.edu.cn/diffusion/unidiffuser.pdf
开源代码:https://github.com/thu-ml/unidiffuser
前置知识
U-ViT
大规模图文数据集 LAION-5B 80TB
https://laion.ai/blog/laion-5b/
58.5 亿个 CLIP 过滤的图像文本对组成的数据集。2,3B 包含英语,2,2B 样本来自 100 多种其他语言,1B 样本包含不允许特定语言分配的文本(例如名称)。
We provide these columns :URL: the image url, millions of domains are covered
TEXT: captions, in english for en, other languages for multi and nolang
WIDTH: picture width
HEIGHT: picture height
LANGUAGE: the language of the sample, only for laion2B-multi, computed using cld3
similarity: cosine between text and image ViT-B/32 embeddings, clip for en, mclip for multi and nolang
pwatermark: probability of being a watermarked image, computed using our watermark detector
punsafe: probability of being an unsafe image, computed using our clip based detector
pwatermark and punsafe are available either as individual collections that must be joined with the hash of url+text, either as prejoined collections.
Diffusion
大致公式:
UniDiffusion
不同分布的扩散模型学习都可以统一成一个视角:首先向两个模态的数据分别加入某种大小的噪声,然后再预测两个模态数据上的噪声。其中两个模态数据上的噪声大小决定了具体的分布。
不同模态的扰动级别(即时间步长,timesteps)不同。UniDiffuser通过在所有模态中扰动数据而不是单个模态,输入不同模态的单独时间步长,并预测所有模态的噪声而不是单个模态,同时学习所有分布。
时间步长是指在扩散过程中,数据被扰动的次数或级别。在不同的模态中,时间步长可以不同,用于控制不同模态之间的条件和联合分布。例如,一个零时间步长意味着在相应的模态上进行条件生成,而一个绑定的时间步长意味着同时采样两个模态。
目标函数
目标函数由两部分组成:(1) 用于估计条件分布的对数似然项,(2) 用于估计噪声分布的对数似然项。这两个项都是通过对数据进行扰动来计算的。
零成本 CFG
Classifier-Free Guidance (CFG)是一种用于改善条件扩散模型采样质量的技术。它通过线性组合条件模型和无条件模型来进行采样,其中条件模型用于生成与给定条件相匹配的样本,无条件模型用于生成高质量的样本。CFG的关键是在采样过程中动态地调整条件和无条件模型的权重,以平衡两者的影响。在UniDiffuser中,CFG可以直接应用于条件和联合采样,而无需修改训练过程。
CFG能直接应用于条件和联合采样,是因为UniDiffuser中的条件和联合采样都是通过对数据进行扰动来实现的。
具体而言,它通过线性组合条件模型和无条件模型进行采样。
ˆ ϵ θ ( x t , y 0 , t ) = ( 1 + s ) ϵ θ ( x t , y 0 , t ) − s ϵ θ ( x t , t ) ˆϵθ(xt, y0, t) = (1 + s)ϵθ(xt, y0, t) − sϵθ(xt, t) ˆϵθ(xt,y0,t)=(1+s)ϵθ(xt,y0,t)−sϵθ(xt,t)
其中 s 是比例因子。条件和无条件模型通过引入空标记 ∅ 共享参数,即$ ϵθ(xt, t) = ϵθ(xt, y0 = ∅, t)$。
CFG 技术在采样过程中动态调整条件和无条件模型之间的权重,以平衡它们的影响。这种方法可以有效地提高样本质量和图像文本对齐。
网络结构
“Transformer as Joint Noise Prediction Network”
是 UniDiffuser 中用于预测注入到输入数据中的噪声的Transformer 。
采用了一个联合噪声预测网络来预测注入到输入数据中的噪声,通过最小化回归损失来训练网络。该网络是基于输入数据及其对应的时间步长所得到的嵌入向量进行训练的。
在 UniDiffuser 中,我们采用了基于 Transformer 的骨干网络来处理来自不同模态的输入数据。我们对 Transformer 进行了修改,将数据的两种模态及其对应的时间步长视为标记。此外,我们还对原始 Transformer 中的预层归一化进行了修改,以避免在使用混合精度训练时出现溢出问题。
结果
没有特别优化,我的实验结果相对一般。
The experiments demonstrate the ability of UniDiffuser to perform multiple generation tasks and directly compare it with existing large models in Section 6.2. UniDiffuser is shown to naturally support applications like data variation, blocked Gibbs sampling between modalities (see Section 6.3), and interpolation between images in the wild (see Section 6.4). The experiments also show that UniDiffuser outperforms existing models in terms of sample quality and diversity. The experiments are conducted on three subsets of LAION-5B dataset following Stable Diffusion.
相关文章:
【论文阅读】UniDiffuser: Transformer+Diffusion 用于图、文互相推理
而多模态大模型将能够打通各种模态能力,实现任意模态之间转化,被认为是通用式生成模型的未来发展方向。 最近看到不少多模态大模型的工作,有医学、金融混合,还有CV&NLP。 今天介绍: One Transformer Fits All Di…...
Python爬虫教程——解析网页中的元素
前言: 嗨喽~大家好呀,这里是小曼呐 ~ 在我们理解了网页中标签是如何嵌套,以及网页的构成之后, 我们就是可以开始学习使用python中的第三方库BeautifulSoup筛选出一个网页中我们想要得到的数据。 接下来我们了解一下爬取网页信息…...
BiMPM实战文本匹配【上】
引言 今天来实现BiMPM模型进行文本匹配,数据集采用的是中文文本匹配数据集。内容较长,分为上下两部分。 数据准备 数据准备这里和之前的模型有些区别,主要是因为它同时有字符词表和单词词表。 from collections import defaultdict from …...
【C++】构造函数和析构函数第二部分(拷贝构造函数)--- 2023.9.28
目录 什么是拷贝构造函数?编译器默认的拷贝构造函数构造函数的分类及调用结束语 什么是拷贝构造函数? 用一句话来描述为拷贝构造即 “用一个已知的对象去初始化另一个对象” 具体怎么使用我们直接看代码,代码如下: class Maker…...
现在学RPA,还有前途吗,会不会太卷?
RPA是机器人流程自动化的缩写,是一种通过软件机器人模拟人类操作计算机的技术。随着人工智能和自动化技术的不断发展,RPA已经成为了企业数字化转型的重要工具之一。那么,现在学习RPA还有前途吗?会不会太卷? 一、RPA的…...
Vue的详细教程--用Vue-cli搭建SPA项目
Vue的详细教程--用Vue-cli搭建SPA项目 1.Vue-cli是什么2.什么是SPA项目1.vue init webpack spa2.一问一答模式2:运行完上面的命令后,我们需要将当前路径改变到SPA这个文件夹内,然后安装需要的模块此步骤可理解成:maven的web项目创…...
openldap访问控制
系统:debian12 /etc/ldap/slapd.d/cnconfig目录下 包含以下三个数据库: dn: olcDatabase{-1}frontend,cnconfig dn: olcDatabase{0}config,cnconfig dn: olcDatabase{1}mdb,cnconfigolcDatabase: [{\<index\>}]\<type\>数据库条目必须具有…...
阿里云服务器技术创新、网络技术和数据中心技术说明
阿里云服务器技术创新、网络技术创新、数据中心技术创新和智能运维:云服务器方升架构、自研硬件、自研存储硬件AliFlash和异构计算加速平台,以及全自研网络系统技术创新和数据中心巴拿马电源、液冷技术等技术创新说明,阿里云百科分享阿里云服…...
华为智能高校出口安全解决方案(2)
本文承接: https://qiuhualin.blog.csdn.net/article/details/131475315?spm1001.2014.3001.5502 重点讲解华为智能高校出口安全解决方案的基础网络安全&业务部署与优化的部署流程。 华为智能高校出口安全解决方案(2) 课程地址基础网络…...
【AI绘画】Stable Diffusion WebUI
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…...
html、css学习记录【uniapp前奏】
Html 声明:该学习笔记源于菜鸟自学网站,特此记录笔记。很多示例源于此官网,若有侵权请联系删除。 文章目录 Html声明: CSS 全称 Cascading Style Sheets,层叠样式表。是一种用来为结构化文档(如 HTML 文档…...
Linux-正则三剑客
目录 一、正则简介 1.正则表达式分两类: 2.正则表达式的意义 二、Linux三剑客简介 1.文本处理工具,均支持正则表达式引擎 2.正则表达式分类 3.基本正则表达式BRE集合 4.扩展正则表达式ere集合 三、grep 1.简介 2.实践 3.贪婪匹配 四、sed …...
Zilliz@阿里云:大模型时代下Milvus Cloud向量数据库处理非结构化数据的最佳实践
大模型时代下的数据存储与分析该如何处理?有没有已经落地的应用实践? 为探讨这些问题,近日,阿里云联合 Zilliz 和 Doris 举办了一场以《大模型时代下的数据存储与分析》为主题的技术沙龙,其中,阿里云对象存储 OSS 上拥有海量的非结构化数据,Milvus(Zilliz)作为全球最有…...
解决 react 项目启动端口冲突
报错信息: Emitted error event on Server instance at:at emitErrorNT (net.js:1358:8)at processTicksAndRejections (internal/process/task_queues.js:82:21) {code: EADDRINUSE,errno: -4091,syscall: listen,address: 0.0.0.0,port: 8070 }解决方法ÿ…...
ChatGPT AIGC 总结Vlookup的20种不同用法
Vlookup是Excel中最常见的函数。接下来我们让ChatGPT,AIGC总结Vlookup函数的用法 。 1. 基本的VLOOKUP用法:=VLOOKUP("John", A2:B5, 2, FALSE)。在A2:B5范围中查找"John",返回与"John"在同一行的第2列的值。例如,查找员工姓名,返回员工ID。…...
Android Logcat 命令行工具
关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、商业变现、人工智能等,希望大家多多支持。 目录 一、导读二、概览三、日常用法3.1 面板介绍3.2 日志过滤…...
蓝桥等考Python组别八级004
第一部分:选择题 1、Python L8 (15分) 运行下面程序,输出的结果是( )。 i = 1 while i <= 3: print(i, end = ) i += 1 1 20 1 2 31 2 30 1 2正确答案:C 2、Python L8...
selenium-webdriver 阿里云ARMS 自动化巡检
很久没更新了,今天分享一篇关于做项目巡检的内容,这部分,前两天刚在公司做了部门分享,趁着劲还没过,发出来跟大家分享下。 一、本地巡检实现 1. Selenium Webdriver(SW) 简介 Selenium Webdriver(以下简称…...
【数据仓库设计基础(二)】维度数据模型
文章目录 一. 概述二. 维度数据模型建模过程三. 维度规范化四. 维度数据模型的特点五. 维度数据模型1. 星型模式1.1.事实表1.2.维度表1.3.优点1.4.缺点1.5.示例 2. 雪花模式2.1.数据规范化与存储2.2&#x…...
【数据结构】排序算法(一)—>插入排序、希尔排序、选择排序、堆排序
👀樊梓慕:个人主页 🎥个人专栏:《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》 🌝每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.直接插入排序 2.希尔排序 3.直接选择排…...
基于JAVA+SpringBoot的新闻发布平台
✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍: 随着科技的飞速发展和…...
Java实现word excel ppt模板渲染与导出及预览 LibreOffice jodconverter
Java Office 一、文档格式转换 文档格式转换是office操作中经常需要进行一个操作,例如将docx文档转换成pdf格式。 java在这方面有许多的操作方式,大致可以分为内部调用(无需要安装额外软件),外部调用(需…...
【通意千问】大模型GitHub开源工程学习笔记(2)
使用Transformers来使用模型 如希望使用Qwen-chat进行推理,所需要写的只是如下所示的数行代码。请确保你使用的是最新代码,并指定正确的模型名称和路径,如Qwen/Qwen-7B-Chat和Qwen/Qwen-14B-Chat 这里给出了一段代码 from transformers import AutoModelForCausalLM, Aut…...
MQ - 35 四款MQ的架构设计与实现的对比
文章目录 导图概述RabbitMQ顺序消息定时和延时消息事务消息优先级队列死信队列WebSocketRocketMQ顺序消息定时和延时消息事务消息死信队列消息查询根据 Offset 查询消息根据时间戳查询消息据消息 ID 查询消息SchemaKafka顺序消息幂等事务消息消息查询...
spring6-IOC容器
IOC容器 1、IoC容器1.1、控制反转(IoC)1.2、依赖注入1.3、IoC容器在Spring的实现 2、基于XML管理Bean2.1、搭建子模块spring6-ioc-xml2.2、实验一:获取bean①方式一:根据id获取②方式二:根据类型获取③方式三ÿ…...
macOS - 使用 chromedriver
文章目录 下载对应的 chromedriver 下载 Chrome https://www.google.com/chrome/ 查看 版本 下载对应的 chromedriver http://chromedriver.storage.googleapis.com/index.html https://chromedriver.chromium.org/downloads 移动 sudo mv chromedriver /usr/local/bin/ $ c…...
项目进展(四)-双电机均可驱动,配置模拟SPI,调平仪功能初步实现!
一、前言 截止到今天,该项目也算实现基本功能了,后续继续更新有关32位ADC芯片相关的内容,今天对驱动芯片做一个总结,也对模拟SPI做一点总结吧 二、模拟SPI 由于模拟SPI还是得有四种模式(CPOL和CPHA组合为四种),下面…...
《学术小白学习之路13》基于DTM和主题共现网络——实现主题时序演化网络分析(数据代码在结尾)
《学术小白学习之路13》基于DTM和主题共现网络实现主题演化网络分析 一、数据导入二、数据预处理2.1分词2.2 向量化三、DTM建模3.1 主题一致性检验3.2主题建模四、计算主题的相似度4.1获取文档主题分布4.2 时期分组4.3相似度计算4.3.1第一时期和第二时期的对比4.3.2第二时期与第…...
实验三十三、三端稳压器 LM7805 稳压性能的研究
一、题目 LM7805 输出电压、电压调整率、电流调整率以及输出纹波电压的研究。 二、仿真电路 电路如图1所示。集成稳压芯片采用 LM7805CT。 三、仿真内容 (1)测量图1(a)LM7805CT 的电压调整率,测量条件为 I O 50…...
第三章 软件架构
固件框架由如下所示的构建块组成,如上图所示。 隔离边界。分区接口。分区。分区清单。分区管理器。以下各小节详细描述了这些构建块。 3.1 隔离边界 该框架定义了两种类型的隔离边界。 1、逻辑隔离边界,可用于以下情况: (1)通过一个由 IMPLEMENTATION DEFINED 机制定义…...
wordpress 七牛云加速/快速seo软件
动态加载 对动态库的加载分为自动加载和动态加载两种 自动加载 程序在开始执行的时候, 将依赖的动态库文件加载到内存中, 再进行函数的链接, 称为自动加载 (之前讲动态库讲过) 动态加载 程序在执行期间, 需要使用到某个动态库中的文件的时候, 可以向动态链接器发出请求, 请求…...
网站外部链接合理建设/关键词优化系统
IDM下载器安卓版是国外热门的多线程下载工具,一款非常优秀的下载神器,支持多媒体下载、自动捕获链接、自动识别文件名、静默下载、批量下载、计划下载任务、站点抓取、队列与网盘支持等 IDM下载速度据说比普通下载器快500%,基本能达到带宽的…...
天河做网站系统/营销型网站建设报价
本人屌丝本一枚,从最早的9.10京东到现在,找工作基本已经结束,除了腾讯的是暑期内推的(8.26面试的),校招期间一共面了四家,其中三家已经收到offer(京东阿里去哪儿),网易还在等通知中。如题,本人只是一个水得不能再水的本科生,大学四年,挂科5-6门的样子(这学期还要重修三门,妈蛋,…...
昆山住房和城乡建设局网站首页/电商网站销售数据分析
在开发中,我们经常需要通过配置不同的环境,来调试代码,比如数据源配置,日志配置,以及其他一些配置。避免使用同一套配置,这样开发和测试时,如果出现问题,只是影响测试环境࿰…...
郑州网站优化的微博_腾讯微博/微信crm系统
你希望你的网站更有说服力吗?说服的能力是演说家、作家和营销人员梦寐以求的技能。在你的网站应用一个或多个这种增强说服力的技术,可以让你游刃有余地控制转化率。 **以下是心理学中最具魅力和说服力的21种说服技巧。**有了这些技巧,就可以…...
lamp网站开发项目文档/中国推广网站
目前中国产业园区数量较多,同质化问题严重,相互之间竞争激烈。随着大数据时代的到来,大数据和社会经济的深度融合,产业园区将向智慧产业园区发展。 智慧园区是园区引入物联网、大数据、云计算等新技术进行全面数字化的基础之上&a…...