当前位置: 首页 > news >正文

Linux -- 使用多张gpu卡进行深度学习任务(以tensorflow为例)

在linux系统上进行多gpu卡的深度学习任务

  • 确保已安装最新的 TensorFlow GPU 版本。
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
  • 1、确保你已经正确安装了tensorflow和相关的GPU驱动,这里可以通过在命令行输入nvidia-smi来查看:
    在这里插入图片描述
    如果成功显示了类似上述的GPU信息和驱动版本信息,则说明NVIDIA驱动已经正确安装。

2、导入必要的库,设置可见的gpu设备列表:

import tensorflow as tf
# 设置可见的GPU设备列表(例如,使用GPU 0、1、2和3)
gpu_devices = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_visible_devices(gpu_devices, 'GPU')

在这里插入图片描述

  • 3、创建一个MirroredStrategy对象,该对象将自动复制模型和数据到每个可见的GPU卡上:
strategy = tf.distribute.MirroredStrategy()
  • 4、在strategy范围内创建和训练模型:
with strategy.scope():# 创建和编译模型model = create_model()model.compile(...)# 加载数据train_dataset = load_train_data()test_dataset = load_test_data()# 训练模型model.fit(train_dataset, validation_data=test_dataset, ...)

以上,在MirroredStrategy范围内创建的模型将自动复制并分布到每个可见的GPU卡上,每个卡都将处理一部分数据。

使用多个 GPU 的最佳做法是使用 tf.distribute.Strategy

以下给出一个官网的简单示例:

tf.debugging.set_log_device_placement(True)
gpus = tf.config.list_logical_devices('GPU')
strategy = tf.distribute.MirroredStrategy(gpus)
with strategy.scope():inputs = tf.keras.layers.Input(shape=(1,))predictions = tf.keras.layers.Dense(1)(inputs)model = tf.keras.models.Model(inputs=inputs, outputs=predictions)model.compile(loss='mse',optimizer=tf.keras.optimizers.SGD(learning_rate=0.2))

当然,也有手动的放置方法:

tf.debugging.set_log_device_placement(True)gpus = tf.config.list_logical_devices('GPU')
if gpus:# Replicate your computation on multiple GPUsc = []for gpu in gpus:with tf.device(gpu.name):a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])c.append(tf.matmul(a, b))with tf.device('/CPU:0'):matmul_sum = tf.add_n(c)print(matmul_sum)

在tensorflow上使用gpu:https://www.tensorflow.org/guide/gpu?hl=zh-cn

相关文章:

Linux -- 使用多张gpu卡进行深度学习任务(以tensorflow为例)

在linux系统上进行多gpu卡的深度学习任务 确保已安装最新的 TensorFlow GPU 版本。 import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices(GPU)))1、确保你已经正确安装了tensorflow和相关的GPU驱动,这里可以通…...

Mendix中的依赖管理:npm和Maven的应用

序言 在传统java开发项目中,我们可以利用maven来管理jar包依赖,但在mendix项目开发Custom Java Action时,由于目录结构有一些差异,我们需要自行配置。同样的,在mendix项目开发Custom JavaScript Action时,…...

自定义hooks之useLastState、useSafeState

自定义hooks之useLastState、useSafeState useLastState 在某些情况下,可能需要知道状态的历史值,例如,希望在状态变化时执行某些操作,但又需要访问上一个状态的值,以便进行比较或其他操作。自定义 React Hook 可以帮…...

前端判断: []+[], []+{}, {}+[], {}+{}

本质: 二元操作符规则 一般判断规则: 如果操作数是对象,则对象会转换为原始值如果其中一个操作数是字符串的话,另一个操作数也会转换成字符串,进行字符串拼接否则,两个操作数都将转换成数字或NaN,进行加法操作 转为原始数据类型的值的方法: Symbol.ToPrimitiveObject.protot…...

el-input-number/el-input 实现实时输入数字转换千分位(失焦时展示千分位)

el-input-number/el-input 实现实时输入数字转换千分位(失焦时展示千分位) 我把封装指令的代码放在了main.js,代码如下 // 金额展示千分位 Vue.directive("thousands", {inserted: function(el, binding) {// debugger// 获取input节点if (el.tagName.toLocaleUppe…...

一篇博客学会系列(2)—— C语言中的自定义类型 :结构体、位段、枚举、联合体

目录 前言 1、结构体 1.1、结构体类型的声明 1.2、特殊的结构体类型声明 1.3、结构体的自引用 1.4、结构体的定义和初始化 1.5、结构体成员变量的调用 1.6、结构体内存对齐 1.6.1、offsetof 1.6.2、结构体大小的计算 1.6.3、为什么存在内存对齐? 1.7、…...

KongA 任意用户登录漏洞分析

KongA 简介 KongA 介绍 KongA 是 Kong 的一个 GUI 工具。GitHub 地址是 https://github.com/pantsel/konga 。 KongA 概述 KongA 带来的一个最大的便利就是可以很好地通过UI观察到现在 Kong 的所有的配置,并且可以对于管理 Kong 节点 漏洞成因 未设置TOKEN_SECRE…...

吉力宝:智能科技鞋品牌步力宝引领传统产业创新思维

在现代经济环境下,市场经济下产品的竞争非常的激烈,如果没有营销,产品很可能不被大众认可,酒香也怕巷子深,许多传统产业不得不面临前所未有的挑战。而为了冲出这个“巷子”,许多企业需要采用创新思维&#…...

【IPC 通信】信号处理接口 Signal API(1)

收发信号思想是 Linux 程序设计特性之一,一个信号可以认为是一种软中断,通过用来向进程通知异步事件。 本文讲述的 信号处理内容源自 Linux man。本文主要对各 API 进行详细介绍,从而更好的理解信号编程。 信号概述 遵循 POSIX.1,…...

使用GDIView排查GDI对象泄漏导致的程序UI界面绘制异常问题

目录 1、问题说明 2、初步分析 3、查看任务管理器,并使用GDIView工具分析 4、GDIView可能对Win10兼容性不好,显示的GDI对象个数不太准确 5、采用历史版本比对法,确定初次出现问题的时间点,并查看前一天的代码修改记录 6、将…...

蓝桥等考Python组别一级001

第一部分:选择题 1、Python L1 (15分) 下面哪个不是Python的编程环境?( ) Python在线编程IDLEPyCharmScratch正确答案:D 2、Python L1(15分) 世界上第一台通用电子计算机ENIAC是在( )诞生的。 美国英国日本德国正确答案:A 3、Python L1(20分) 关于P…...

Unity之Hololens2开发 如何接入的MRTK OpenXR Plugin

一.前言 什么是Hololens? Hololens是由微软开发的一款混合现实头戴式设备,它将虚拟内容与现实世界相结合,为用户提供了沉浸式的AR体验。Hololens通过内置的传感器和摄像头,能够感知用户的环境,并在用户的视野中显示虚拟对象。这使得用户可以与虚拟内容进行互动,将数字信…...

Ubuntu系统Linux内核安装和使用

安装: 检查树莓派Linux版本,我的是6.1 uname -r 内核下载链接: Raspberry Pi GitHub 找对应版本下载 导入之后,解压安装即可 unzip linux-rpi-6.1.y.zip 其他内容 treee 指令安装 sudo apt-get install tree 使用这…...

数学术语之源——群同态的“核(kernel)”

1. “kernel”这个术语在群论中的起源 Ivar Fredholm 在 1903 年的第27期Acta Math 数学学报发表的一篇关于“积分方程(INTEGRAL EQUATIONS)”的著名论文(“关于一类函数方程(Sur une classe des quations fonctionnelles)”)中使用了法语“noyau(核)”(365-390页)。 David …...

defcon-quals 2023 crackme.tscript.dso wp

将dso文件放到data/ExampleModule目录下,编辑ExampleModule.tscript文件 function ExampleModule::onCreate(%this) { trace(true); exec("./crackme"); __main("aaaaaaaa"); quit(); } 然后点击主目录下的Torque3D-debug.bat就可以在生成的c…...

前端开发 vs. 后端开发:编程之路的选择

文章目录 前端开发:用户界面的创造者1. HTML/CSS/JavaScript:2. 用户体验设计:3. 响应式设计:4. 前端框架: 后端开发:数据和逻辑的构建者1. 服务器端编程:2. 数据库:3. 安全性&#…...

算法练习4——删除有序数组中的重复项 II

LeetCode 80 删除有序数组中的重复项 II 给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使得出现次数超过两次的元素只出现两次 ,返回删除后数组的新长度。 不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 …...

【C++进阶(六)】STL大法--栈和队列深度剖析优先级队列适配器原理

💓博主CSDN主页:杭电码农-NEO💓   ⏩专栏分类:C从入门到精通⏪   🚚代码仓库:NEO的学习日记🚚   🌹关注我🫵带你学习C   🔝🔝 栈和队列 1. 前言2. 栈和队列的接口函数熟悉3. …...

linux opensuse使用mtk烧录工具flashtool

环境 linux发行版:opensuse leap 15.5 工具:SP_Flash_Tool_Selector_exe_Linux_v1.2316.00.100.rar 或其他版本 目标:mtk设备 下载链接 https://download.csdn.net/download/zmlovelx/88382784 或网络搜索。 使用 opensuse可直接解压后使…...

Visio如何对文本打下标、上标,以及插入公式编辑器等问题(已解决)

解决这个问题的本质问题,就是在Visio中插入公式编辑器(这不是visio的常用命令,需要添加)。 打开Visio--》文件--选项 点击选项,弹出对话框。在自定义功能区中,点击 常用命令,在下拉选项中&#…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...