当前位置: 首页 > news >正文

医疗图像分割指标

医疗图像其中两种图像格式:MRI(Magnetic Resonance Imaging,磁共振成像)、CT(Computed Tomography,计算机断层),常存成 .nii.gz 格式。都是 3D 的 H × W × L H \times W \times L H×W×L,但不是 RGB,而是类似 grey-scale 图只有一个 channel,如 CT 的值可能是 Hu 值,取值范围可从负几千到正几千,参考 [1]。segmentation label 也相应是 3D 的。
med-planes
这里记录几种分割指标,参考 [2,3],可调 medpy 的包,其文档也有指标列表。记有 C + 1 个类,0 固定是 background,(某个数据的)prediction 和 label Y ^ , Y ∈ { 0 , … , C } H × W × L \hat{Y},Y\in \{0, \dots, C\}^{H \times W \times L} Y^,Y{0,,C}H×W×L,只留下第 c 类的 binary prediction 和 label 为 B ^ c , B c ∈ { 0 , 1 } H × W × L \hat{B}^c,B^c \in \{0, 1\}^{H \times W \times L} B^c,Bc{0,1}H×W×L ∣ ⋅ ∣ |\cdot| 表示非零元素个数, B ^ c , B c \hat{B}^c,B^c B^c,Bc 的 surface / boundray 记为 S ^ c , S c \hat{S}^c, S^c S^c,Sc,是其表面 voxels 的三维索引向量(下标)的集合。

Dice Coefficient

即 F1-scoure[2]。第 c 类的 dice 系数: D C c = 2 ∣ B ^ c ∩ B c ∣ ∣ B ^ c ∣ + ∣ B c ∣ DC_c=\frac{2|\hat{B}^c \cap B^c|}{|\hat{B}^c| + |B^c|} DCc=B^c+Bc2∣B^cBc 调包:medpy.metric.binary.dc。

IoU

即 Jaccard 系数[2]。第 c 类的 IoU: I o U c = ∣ B ^ c ∩ B c ∣ ∣ B ^ c ∪ B c ∣ IoU_c = \frac{|\hat{B}^c \cap B^c|}{|\hat{B}^c \cup B^c|} IoUc=B^cBcB^cBc 调包:medpy.metric.binary.jc。由 [3],IoU 与 dice 系数有确定的转换关系,即等价,所以两者应该用其中一种就行。C 类的 IoU 取平均就是 mIoU: m I o U = ∑ c = 1 C I o U c C mIoU=\frac{\sum_{c=1}^{C}IoU_c}{C} mIoU=Cc=1CIoUc(2023.9.28:不确定算 mIOU 时要不要加上 background)

Sensitivity

即 recall,也叫 TPR(True Positive Rate),非对称。第 c 类的 sensitivity: R c = ∣ B ^ c ∩ B c ∣ ∣ B c ∣ R_c=\frac{|\hat{B}^c \cap B^c|}{|B^c|} Rc=BcB^cBc 调包:medpy.metric.binary.sensitivity 或 medpy.metric.binary.recall。

Specificity

也叫 selectivity、TNR(True Negative Rate),是 sensitivity 的补。第 c 类的 specifity: S P c = ∣ ( 1 − B ^ c ) ∩ ( 1 − B c ) ∣ ∣ ( 1 − B c ) ∣ SP_c = \frac{|(1-\hat{B}^c) \cap (1-B^c)|}{|(1-B^c)|} SPc=(1Bc)(1B^c)(1Bc) 调包:medpy.metric.binary.specificity。

Average (Symmetric) Surface Distance

由 [4],第 c 类的 average surface distance: A S D ( S ^ c , S c ) = ∑ p ∈ S ^ p c d s ( p , S c ) / ∣ S ^ c ∣ ASD(\hat{S}^c, S^c) = \sum_{p \in \hat{S}^c_p} d_s(p,S^c) \big/ |\hat{S}^c| ASD(S^c,Sc)=pS^pcds(p,Sc)/S^c 其中 d s ( ⋅ , ⋅ ) d_s(\cdot,\cdot) ds(,) 是点到点集(此处是表面 S)距离: d s ( p , S ) = min ⁡ q ∈ S d ( p , q ) d_s(p,S)=\min_{q \in S} d(p,q) ds(p,S)=qSmind(p,q) p , q ∈ { 1 , … , W } × { 1 , … , H } × { 1 , … , L } p,q \in \{1,\dots,W\} \times \{1,\dots,H\} \times \{1,\dots,L\} p,q{1,,W}×{1,,H}×{1,,L} 是三维索引向量(下标), d ( ⋅ , ⋅ ) d(\cdot,\cdot) d(,) 是欧氏距离。就是对 S ^ \hat{S} S^ 中属于此 object 表面的每一个 voxel,都算一下它到 S 的距离,然后取平均。调包:medpy.metric.binary.asd。

ASD 不对称,一般会用 ASSD: A S S D ( S ^ c , S c ) = A S D ( S ^ c , S c ) + A S D ( S c , S ^ c ) 2 ASSD(\hat{S}^c, S^c) = \frac{ASD(\hat{S}^c, S^c) + ASD(S^c, \hat{S}^c)}{2} ASSD(S^c,Sc)=2ASD(S^c,Sc)+ASD(Sc,S^c) 调包:medpy.metric.binary.assd。有些文章也会将 ASSD 简叫成 ASD,感觉可以无脑只用 ASSD。

Hausdorff Distance

由 [2,4],第 c 类的 Hausdorff 距离: H D ( S ^ c , S c ) = max ⁡ { sup ⁡ p ∈ S ^ c d s ( p , S c ) , sup ⁡ p ∈ S c d s ( p , S ^ c ) } HD(\hat{S}^c,S^c)=\max\left\{ \sup_{p \in \hat{S}^c} d_s(p, S^c), \sup_{p \in S^c} d_s(p, \hat{S}^c) \right\} HD(S^c,Sc)=max{pS^csupds(p,Sc),pScsupds(p,S^c)} 调包:medpy.metric.binary.hd。

Code

  • 分割模型应该一般 predict 的都是 (C+1)-way softmax prediction,即 Y ^ \hat{Y} Y^
from collections import defaultdict
import numpy as np
from medpy.metric.binary import dc, jc, hd, assd, sensitivity, specificitydef evaluate(Y_pred, Y_true, n_classes):""""medical segmentation evaluationInput:Y_pred, Y_true: [H, W, L], in {0, ..., n_classes - 1}n_classes: intOutput:res: {<metric_name>: [<class_0>, ..., class_nc-1]}"""metric_names = ("dice", "sensitivity", "specificity", "assd", "hd")#, "iou")metric_fn    = (dc, sensitivity, specificity, assd, hd)#, jc)res = defaultdict(list)for c in range(n_classes):B_pred_c = (Y_pred == c).astype(np.uint8)B_c      = (Y_true == c).astype(np.uint8)for metr, fn in zip(metric_names, metric_fn):res[metr].append(fn(B_pred_c, B_c))return res

References

  1. 亨氏单位
  2. 常用的医学图像分割评价指标
  3. 医学图像分割常用指标及代码(pytorch)
  4. (MIA 2022) Rethinking adversarial domain adaptation: Orthogonal decomposition for unsupervised domain adaptation in medical image segmentation - paper, github

相关文章:

医疗图像分割指标

医疗图像其中两种图像格式&#xff1a;MRI&#xff08;Magnetic Resonance Imaging&#xff0c;磁共振成像&#xff09;、CT&#xff08;Computed Tomography&#xff0c;计算机断层&#xff09;&#xff0c;常存成 .nii.gz 格式。都是 3D 的 H W L H \times W \times L HWL…...

零代码编程:用ChatGPT批量修改文件夹名称中的大小写

一个文件夹下面有很多个子文件夹&#xff0c;要把文件夹中的大写数字全部重命名为小写数字&#xff0c;比如将二 三 四&#xff0c;改成&#xff1a; 2 34 在ChatGPT中输入提示词如下&#xff1a; 你是一个Python编程专家&#xff0c;要完成一个文件夹重命名的任务。具体步骤如…...

webpack:详解cache模块常用配置

背景 持久化缓存算得上是 Webpack 5 最令人振奋的特性之一&#xff0c;它能够将首次构建结果持久化到本地文件系统&#xff0c;在下次执行构建时跳过一系列解析、链接、编译等非常消耗性能的操作&#xff0c;直接复用 module、chunk 的构建结果。 cache 会在开发模式被设置成…...

云原生Kubernetes:Pod控制器

目录 一、理论 1.Pod控制器 2.Deployment 控制器 3.SatefulSet 控制器 4.DaemonSet 控制器 5.Job 控制器 6.CronJob 控制器 二、实验 1.Deployment 控制器 2.SatefulSet 控制器 3.DaemonSet 控制器 4.Job 控制器 5.CronJob 控制器 三、问题 1. showmount -e 报错…...

数据库基础与MySQL入门

在当今的数字化世界中,数据如同生命之水,它贯穿于各种应用和服务中。尤其在游戏行业,例如经典的《三国志》,数据库管理成了一个不可或缺的环节。这不仅涉及到用户信息的存储,还涉及到游戏状态、积分、交易等复杂的数据处理需求。 MySQL作为一个广受欢迎的数据库管理系统,…...

探索Java爬虫框架:解锁网络数据之门

引言&#xff1a; 随着互联网时代的发展&#xff0c;大量的数据被存储在各种网页中。对于开发者而言&#xff0c;如何高效地获取和处理这些网络数据成为了一个重要的问题。而Java作为一门强大的编程语言&#xff0c;也有许多优秀的爬虫框架供开发者选择和使用。本文将带您深入…...

智慧燃气平台的总体架构到底应怎样设计?

关键词&#xff1a;智慧燃气、智慧燃气平台、智能燃气、智能监控 智慧燃气平台功能设计的一些方向和思考&#xff1a; 1、资源统一&#xff0c;管理调度 城市燃气智慧调度运营管理平台收集并且整理出每个业务系统信息&#xff0c;并且根据所整理出的信息结果制定出标准规范&…...

MonkeyRunner测试步骤

首先把安卓SDK的 环境变量给配置好&#xff0c;这里就不再多解释&#xff0c;自己google 然后将自己的安卓设备打开调试模式&#xff0c;USB连接至电脑&#xff0c;运行CMD,输入命令adb devices 查看你的安卓设备的ID&#xff08;ID后面写程序会调用&#xff09;&#xff0c;…...

Konva基本处理流程和相关架构设计

前言 canvas是使用JavaScript基于上下文对象进行2D图形的绘制的HTML元素&#xff0c;通常用于动画、游戏画面、数据可视化、图片编辑以及实时视频处理等方面。基于Canvas之上&#xff0c;诞生了例如 PIXI、ZRender、Fabric、Konva等 Canvas渲染引擎&#xff0c;兼顾易用的同时…...

人工智能AI知多少?

摘要 人工智能(Artificial Intelligence,简称AI)是一项前沿技术,正在快速发展并渗透到各个领域。然而,对于大多数人来说,人工智能仍然是一个陌生而复杂的概念。本文旨在对人工智能进行扫盲,介绍其基本概念、应用领域以及当前热门的人工智能模型。通过具体的例子,读者将…...

leetcode1610. 可见点的最大数目(java)

可见点的最大数目 题目描述滑动窗口 题目描述 难度 - 困难 leetcode1610. 可见点的最大数目 给你一个点数组 points 和一个表示角度的整数 angle &#xff0c;你的位置是 location &#xff0c;其中 location [posx, posy] 且 points[i] [xi, yi] 都表示 X-Y 平面上的整数坐标…...

Apache Flume

Flume 1.9.0 Developer Guide【Flume 1.9.0开发人员指南】 Introduction【介绍】 摘自&#xff1a;Flume 1.9.0 Developer Guide — Apache Flume Overview【概述】 Apache Flume is a distributed, reliable, and available system for efficiently collecting, aggregati…...

【切片】基础不扎实引发的问题

本次文章主要是来聊聊关于切片传值需要注意的问题&#xff0c;如果不小心&#xff0c;则很容易引发线上问题&#xff0c;如果不够理解&#xff0c;可能会出现奇奇怪怪的现象 问题情况&#xff1a; 小 A 负责一个模块功能的实现&#xff0c;在调试代码的时候可能不仔细&#x…...

CVE-2023-5129 libwebp堆缓冲区溢出漏洞影响分析

漏洞简述 近日苹果、谷歌、Mozilla和微软等公司积极修复了libwebp组件中的缓冲区溢出漏洞&#xff0c;相关时间线如下&#xff1a; 9月7日&#xff0c;苹果发布紧急更新&#xff0c;修复了此前由多伦多大学公民实验室报告的iMessage 0-click 漏洞&#xff0c;漏洞被认为已经被…...

leetcode做题笔记155. 最小栈

设计一个支持 push &#xff0c;pop &#xff0c;top 操作&#xff0c;并能在常数时间内检索到最小元素的栈。 实现 MinStack 类: MinStack() 初始化堆栈对象。void push(int val) 将元素val推入堆栈。void pop() 删除堆栈顶部的元素。int top() 获取堆栈顶部的元素。int get…...

蓝海彤翔亮相2023新疆网络文化节重点项目“新疆动漫节”

9月22日上午&#xff0c;2023新疆网络文化节重点项目“新疆动漫节”&#xff08;以下简称“2023新疆动漫节”&#xff09;在克拉玛依科学技术馆隆重开幕&#xff0c;蓝海彤翔作为国内知名的文化科技产业集团应邀参与此次活动&#xff0c;并在美好新疆e起向未来动漫展映区设置展…...

【AI视野·今日NLP 自然语言处理论文速览 第四十四期】Fri, 29 Sep 2023

AI视野今日CS.NLP 自然语言处理论文速览 Fri, 29 Sep 2023 Totally 45 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers MindShift: Leveraging Large Language Models for Mental-States-Based Problematic Smartphone Use Interve…...

【VsCode】vscode创建文件夹有小图标显示和配置

效果 步骤 刚安装软件后&#xff0c; 开始工作目录下是没有小图标显示的。 如下图操作&#xff0c;安装vscode-icons 插件&#xff0c;重新加载即可 创建文件夹&#xff0c;显示图标如下&#xff1a;...

celery分布式异步任务队列-4.4.7

文章目录 celery介绍兼容性简单使用安装使用方式 功能介绍常用案例获取任务的返回值任务中使用logging定义任务基类 任务回调函数No result will be storedResult will be stored任务的追踪、失败重试 python setup.py installln -s /run/shm /dev/shmOptional configuration, …...

解决M2苹果芯片Mac无法安装python=3.7的虚拟环境

问题描述 conda无法安装python3.7的虚拟环境&#xff1a; conda create -n py37 python3.7出现错误 (base) ➜ AzurLaneAutoScript git:(master) conda create -n alas python3.7.6 -y Collecting package metadata (current_repodata.json): done Solving environment: fa…...

Sound/播放提示音, Haptics/触觉反馈, LocalNotification/本地通知 的使用

1. Sound 播放提示音 1.1 音频文件: tada.mp3&#xff0c; badum.mp3 1.2 文件位置截图: 1.3 实现 import AVKit/// 音频管理器 class SoundManager{// 单例对象 Singletonstatic let instance SoundManager()// 音频播放var player: AVAudioPlayer?enum SoundOption: Stri…...

Oracle实现主键字段自增

Oracle实现主键自增有4种方式&#xff1a; Identity Columns新特性自增&#xff08;Oracle版本≥12c&#xff09;创建自增序列&#xff0c;创建表时&#xff0c;给主键字段默认使用自增序列创建自增序列&#xff0c;使用触发器使主键自增创建自增序列&#xff0c;插入语句&…...

【C++数据结构】二叉树搜索树【完整版】

目录 一、二叉搜索树的定义 二、二叉搜索树的实现&#xff1a; 1、树节点的创建--BSTreeNode 2、二叉搜索树的基本框架--BSTree 3、插入节点--Insert 4、中序遍历--InOrder 5、 查找--Find 6、 删除--erase 完整代码&#xff1a; 三、二叉搜索树的应用 1、key的模型 &a…...

TouchGFX之字体缓存

使用二进制字体需要将整个字体加载到存储器。 在某些情况下&#xff0c;如果字体很大&#xff0c;如大字号中文字体&#xff0c;则这样做可能不可取。 字体缓存使应用能够从外部存储器只能加载显示字符串所需的字母。 这意味着整个字体无需保存到在可寻址闪存或RAM上&#xff…...

windows系统关闭软件开机自启的常用两种方法

win10中安装软件时经常会默认开机自启动&#xff0c;本文主要介绍两种关闭软件开机自启动方法。 方法1 通过任务管理器设置 1.在任务管理器中禁用开机自启动&#xff1a;打开任务管理器&#xff0c;右键已启动的软件&#xff0c;选择禁用。 方法2 通过windows服务控制开机自启…...

巧用@Conditional注解根据配置文件注入不同的bean对象

项目中使用了mq&#xff0c;kafka两种消息队列进行发送数据&#xff0c;为了避免硬编码&#xff0c;在项目中通过不同的配置文件自动识别具体消息队列策略。这里整理两种实施方案&#xff0c;仅供参考&#xff01; 方案一&#xff1a;创建一个工具类&#xff0c;然后根据配置文…...

论文笔记(整理):轨迹相似度顶会论文中使用的数据集

0 汇总 数据类型数据名称数据处理出租车数据波尔图 原始数据&#xff1a;2013年7月到2014年6月&#xff0c;170万条数据 ICDE 2023 Contrastive Trajectory Similarity Learning with Dual-Feature Attention 过滤位于城市&#xff08;或国家&#xff09;区域之外的轨迹 过…...

Python实现单例模式

使用函数装饰器 def singleton(cls):_instance {}def inner():if cls not in _instance:_instance[cls] cls()return _instance[cls]return innersingleton class Demo(object):def __init__(self):passdef test():b1 Demo()b2 Demo()print(b1, b2)使用类装饰器 class si…...

spark相关网站

Spark的五种JOIN策略解析 https://www.cnblogs.com/jmx-bigdata/p/14021183.html 万字详解整个数据仓库建设体系&#xff08;好文值得收藏&#xff09; https://mp.weixin.qq.com/s?__bizMzg2MzU2MDYzOA&mid2247484692&idx1&snf624672e62ba6cd4cc69bdb6db28756a&…...

ThreeJS-3D教学四-光源

three模拟的真实3D环境&#xff0c;一个非常炫酷的功能便是对光源的操控&#xff0c;之前教学一中已经简单的描述了多种光源&#xff0c;这次咱们就详细的讲下一些最常见的光源&#xff1a; AmbientLight 该灯光在全局范围内平等地照亮场景中的所有对象。 该灯光不能用于投射阴…...

盘锦做网站价格/营销案例分析

概念Java中数组属于引用类型。数组使用场合较多&#xff0c;对于数组的操作具有一定重复性&#xff0c;例如&#xff1a;数组拷贝&#xff0c;转换字符串&#xff0c;转换成数组&#xff0c;排序等等。既然重复的操作与需求多&#xff0c;那么对于数组操作的支持就成了JDK中的一…...

h5响应式网站/长沙营销型网站建设

在5G的大势所趋之下&#xff0c;手机厂商也逐渐展露了各自在5G上的布局&#xff0c;其中华为与OPPO两大头部厂商也都推出了自家的5G手机&#xff1a;华为Mate30 Pro 5G和OPPO Reno3 Pro。这两部双模5G手机可以说都是“黑科技”于一身&#xff0c;旨在为消费者带去更好的体验&am…...

php调用网站导航怎么弄/百度app平台

随着低代码如火如荼的发展&#xff0c;很多人浏览到相关文章时&#xff0c;看到少开发少些代码&#xff0c;会觉得那这种软件的发展不是在抢程序员“饭碗”吗&#xff1f; 首先必须要回答这个问题。不会打翻程序员“饭碗”的。低代码它不是万能的&#xff0c;程序员才是万能的…...

wordpress三级联动/免费网站推广网站不用下载

控制论的创始人维纳认为&#xff1a;信息就是信息&#xff0c;不是物质也不是能量。也就是说&#xff0c;信息与物质、能量是有区别的。同时&#xff0c;信息与物质、能量之间也存在着密切的关系。物质、能量、信息是构成现实世界的三大要素。只要事物之间的相互联系和相互作用…...

真正做新闻网站/站内seo和站外seo区别

1.首先IP地址为&#xff1a;10.20.105.145 方法1&#xff1a; 1.用wps有个双面打印&#xff0c;然后打印完需要把打印完单面的纸给纵向翻转&#xff0c;让有字体的那一面朝上&#xff0c;并且字的朝向为右&#xff0c;最后一步就是把这些纸的最上面的挪到最下面&#xff0c;依…...

求职网站网页模板/海外推广营销系统

精彩回顾如何实现H5可视化编辑器的实时预览和真机扫码预览功能在线IDE开发入门之从零实现一个在线代码编辑器基于ReactKoa实现一个h5页面可视化编辑器&#xff0d;DooringTS核心知识点总结及项目实战案例分析前言本文是基于上一篇文章介绍H5编辑器 后台管理系统实战的第二篇文章…...