STM32F4X UCOSIII任务消息队列
STM32F4X UCOSIII任务消息队列
- 任务消息队列和内核消息队列对比
- 内核消息队列
- 内核消息队列
- UCOSIII任务消息队列API
- 任务消息队列发送函数
- 任务消息队列接收函数
- UCOSIII任务消息队列例程
之前的章节中讲解过消息队列这个机制,UCOSIII除了有内核消息队列之外,还有任务消息队列。在UCOSIII中,每个任务内部都会有一个内嵌消息队列。在大多数情况下,任务消息队列可以代替内核消息队列。
任务消息队列和内核消息队列对比
内容 | 内核消息队列 | 任务消息队列 |
---|---|---|
是否需要创建 | 是 | 否 |
是否需要指定任务 | 否 | 是 |
是否可以广播 | 是 | 否 |
内核消息队列
内核消息队列在使用前需要用户创建消息队列,内核消息队列不需要指定接收消息队列的任务,并且可以以广播的方式给所有等待消息队列的任务获取消息。
内核消息队列
任务消息队列不需要用户创建,任务消息队列在创建任务的时候就已经内嵌到任务控制块里面。任务消息队列使用的时候需要指定接收任务消息队列的任务,而且一次只能指定一个任务,不能广播。
UCOSIII任务消息队列API
任务消息队列发送函数
/** p_tcb:指向需要发送信号量的任务,NULL则代表自己* p_void:需要发送的消息指针* msg_size:需要发送的消息长度* opt:用户选项* p_err:错误代码
*/
void OSTaskQPost (OS_TCB *p_tcb,void *p_void,OS_MSG_SIZE msg_size,OS_OPT opt,OS_ERR *p_err)
opt可以选择OS_OPT_POST_FIFO和OS_OPT_POST_LIFO
- OS_OPT_POST_FIFO:消息以先进先出的模式存放
- OS_OPT_POST_LIFO:消息以后进先出的模式存放
任务消息队列接收函数
/** timeout:超时时间* opt:用户选项* p_msg_size:接收到的消息长度* p_ts:时间戳* p_err:错误代码
返回值:返回接收到消息指针,如果为NULL则接收错误
*/
void *OSTaskQPend (OS_TICK timeout,OS_OPT opt,OS_MSG_SIZE *p_msg_size,CPU_TS *p_ts,OS_ERR *p_err)
opt可以选择OS_OPT_PEND_BLOCKING和OS_OPT_PEND_NON_BLOCKING
- OS_OPT_PEND_BLOCKING:阻塞等待任务消息队列,除非有任务消息队列,否则任务不会恢复
- OS_OPT_PEND_NON_BLOCKING:不阻塞等待任务消息队列,如果任务等待时间超过设定的超时时间,任务会恢复并返回一个错误代码
UCOSIII任务消息队列例程
例程中任务1会每隔1秒向任务2发送任务消息,任务2则阻塞等待消息
/*
*********************************************************************************************************
* EXAMPLE CODE
*
* (c) Copyright 2013; Micrium, Inc.; Weston, FL
*
* All rights reserved. Protected by international copyright laws.
* Knowledge of the source code may not be used to write a similar
* product. This file may only be used in accordance with a license
* and should not be redistributed in any way.
*********************************************************************************************************
*//*
*********************************************************************************************************
*
* EXAMPLE CODE
*
* IAR Development Kits
* on the
*
* STM32F429II-SK KICKSTART KIT
*
* Filename : app.c
* Version : V1.00
* Programmer(s) : YS
*********************************************************************************************************
*//*
*********************************************************************************************************
* INCLUDE FILES
*********************************************************************************************************
*/#include <includes.h>/*
*********************************************************************************************************
* LOCAL DEFINES
*********************************************************************************************************
*//*
*********************************************************************************************************
* LOCAL GLOBAL VARIABLES
*********************************************************************************************************
*//* ----------------- APPLICATION GLOBALS -------------- */
static OS_TCB AppTaskStartTCB;
static CPU_STK AppTaskStartStk[APP_CFG_TASK_START_STK_SIZE];#define APPTASK1NAME "App Task1"
#define APP_TASK1_PRIO 3
#define APP_TASK1_STK_SIZE 1024
static OS_TCB AppTask1TCB;
static void AppTask1 (void *p_arg);
static CPU_STK AppTask1Stk[APP_TASK1_STK_SIZE];#define APPTASK2NAME "App Task2"
#define APP_TASK2_PRIO 4
#define APP_TASK2_STK_SIZE 1024
static OS_TCB AppTask2TCB;
static void AppTask2 (void *p_arg);
static CPU_STK AppTask2Stk[APP_TASK2_STK_SIZE];
/*
*********************************************************************************************************
* FUNCTION PROTOTYPES
*********************************************************************************************************
*/static void AppTaskStart (void *p_arg);
struct msg
{char msg_string[50];int value;
};/*
*********************************************************************************************************
* main()
*
* Description : This is the standard entry point for C code. It is assumed that your code will call
* main() once you have performed all necessary initialization.
*
* Arguments : none
*
* Returns : none
*********************************************************************************************************
*/int main(void)
{OS_ERR err;OSInit(&err); /* Init uC/OS-III. */OSTaskCreate((OS_TCB *)&AppTaskStartTCB, /* Create the start task */(CPU_CHAR *)"App Task Start",(OS_TASK_PTR )AppTaskStart,(void *)0u,(OS_PRIO )APP_CFG_TASK_START_PRIO,(CPU_STK *)&AppTaskStartStk[0u],(CPU_STK_SIZE )AppTaskStartStk[APP_CFG_TASK_START_STK_SIZE / 10u],(CPU_STK_SIZE )APP_CFG_TASK_START_STK_SIZE,(OS_MSG_QTY )0u,(OS_TICK )0u,(void *)0u,(OS_OPT )(OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR),(OS_ERR *)&err);OSStart(&err); /* Start multitasking (i.e. give control to uC/OS-III). */}/*
*********************************************************************************************************
* STARTUP TASK
*
* Description : This is an example of a startup task. As mentioned in the book's text, you MUST
* initialize the ticker only once multitasking has started.
*
* Arguments : p_arg is the argument passed to 'AppTaskStart()' by 'OSTaskCreate()'.
*
* Returns : none
*
* Notes : 1) The first line of code is used to prevent a compiler warning because 'p_arg' is not
* used. The compiler should not generate any code for this statement.
*********************************************************************************************************
*/static void AppTaskStart (void *p_arg)
{CPU_INT32U cpu_clk_freq;CPU_INT32U cnts;OS_ERR err;(void)p_arg;BSP_Init(); CPU_Init(); /* Initialize the uC/CPU services */cpu_clk_freq = BSP_CPU_ClkFreq(); /* Determine SysTick reference freq. */cnts = cpu_clk_freq /* Determine nbr SysTick increments *// (CPU_INT32U)OSCfg_TickRate_Hz;OS_CPU_SysTickInit(cnts); /* Init uC/OS periodic time src (SysTick). */Mem_Init(); /* Initialize memory managment module */Math_Init(); /* Initialize mathematical module */#if OS_CFG_STAT_TASK_EN > 0uOSStatTaskCPUUsageInit(&err); /* Compute CPU capacity with no task running */
#endif#ifdef CPU_CFG_INT_DIS_MEAS_ENCPU_IntDisMeasMaxCurReset();
#endif#if (APP_CFG_SERIAL_EN == DEF_ENABLED)App_SerialInit(); /* Initialize Serial communication for application ... */
#endifOSTaskCreate((OS_TCB *)&AppTask1TCB, // 线程TCB (CPU_CHAR *)APPTASK1NAME, // 线程名字(OS_TASK_PTR ) AppTask1, // 线程入口函数(void *) "TASK1", // 线程参数(OS_PRIO ) APP_TASK1_PRIO, // 线程优先级(CPU_STK *)&AppTask1Stk[0], // 线程栈起始地址(CPU_STK_SIZE) APP_TASK1_STK_SIZE / 10, // 栈深度的限制位置(CPU_STK_SIZE) APP_TASK1_STK_SIZE, // 栈大小(OS_MSG_QTY ) 5u, // 最大的消息个数(OS_TICK ) 0u, // 时间片(void *) 0, // 向用户提供的内存位置的指针(OS_OPT )(OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR), // 线程特定选项(OS_ERR *)&err); // 错误标志if(OS_ERR_NONE == err)printf("%s Create Success\r\n",APPTASK1NAME);elseprintf("%s Create Error\r\n",APPTASK1NAME);OSTaskCreate((OS_TCB *)&AppTask2TCB, // 线程TCB (CPU_CHAR *)APPTASK2NAME, // 线程名字(OS_TASK_PTR ) AppTask2, // 线程入口函数(void *) "TASK2", // 线程参数(OS_PRIO ) APP_TASK2_PRIO, // 线程优先级(CPU_STK *)&AppTask2Stk[0], // 线程栈起始地址(CPU_STK_SIZE) APP_TASK2_STK_SIZE / 10, // 栈深度的限制位置(CPU_STK_SIZE) APP_TASK2_STK_SIZE, // 栈大小(OS_MSG_QTY ) 5u, // 最大的消息个数(OS_TICK ) 0u, // 时间片(void *) 0, // 向用户提供的内存位置的指针(OS_OPT )(OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR), // 线程特定选项(OS_ERR *)&err); // 错误标志if(OS_ERR_NONE == err)printf("%s Create Success\r\n",APPTASK2NAME);elseprintf("%s Create Error\r\n",APPTASK2NAME);OSTaskDel ( & AppTaskStartTCB, & err ); }static void AppTask1 (void *p_arg)
{OS_ERR err;static struct msg msg_send = {0};while(DEF_TRUE){OSTimeDly ( 1000, OS_OPT_TIME_DLY, & err ); // 1s运行一次Str_Copy_N(msg_send.msg_string,"hello this is a msg1",sizeof(msg_send.msg_string)); // 填充消息OSTaskQPost(&AppTask2TCB,&msg_send,sizeof(struct msg),OS_OPT_POST_FIFO,&err); // 向TASK2发送任务消息msg_send.value++;if(err == OS_ERR_NONE)printf("Task1 Msg Post Success\r\n");elseprintf("Task1 Msg Post Error\r\n");}}
static void AppTask2 (void *p_arg)
{OS_ERR err;struct msg *pmsg;OS_MSG_SIZE msg_size;while(DEF_TRUE){pmsg = OSTaskQPend(0,OS_OPT_PEND_BLOCKING,&msg_size,0,&err); // 阻塞等待任务消息if(err == OS_ERR_NONE)printf("Task2 Get Msg Success \r\n");elseprintf("Task1 Get Msg Error\r\n");printf("msg srting %s\r\n",pmsg->msg_string);printf("msg value %d\r\n",pmsg->value);}}
相关文章:

STM32F4X UCOSIII任务消息队列
STM32F4X UCOSIII任务消息队列 任务消息队列和内核消息队列对比内核消息队列内核消息队列 UCOSIII任务消息队列API任务消息队列发送函数任务消息队列接收函数 UCOSIII任务消息队列例程 之前的章节中讲解过消息队列这个机制,UCOSIII除了有内核消息队列之外࿰…...

8个居家兼职,帮助自己在家搞副业
越来越多的人开始追求居家工作的机会,无论是为了获得更多收入以改善生活质量,还是为了更好地平衡工作和家庭的关系,居家兼职已成为一种趋势。而在家中从事副业不仅能够为我们带来额外的收入,更重要的是,它可以让我们在…...

管理与系统思维
技术管理者不仅仅需要做事情,还需要以系统思维的方式推动组织变革,从而帮助团队和个人做到更好。原文: Management and Systems Thinking 图片来源: Dall-E "除非管理者考虑到组织的系统性,否则大多数提高绩效的努力都将注定失败。"…...
电死人的是电流还是电压?
先说答案,是电流。 这个有两个派别,一个是电流派,一个是电压派。 举个例子,拿我们的头发或者指甲之类的高电阻物质去接触高压,你会发现基本没有什么作用;还有就是冬天我们脱毛衣的时候,噼里啪啦…...
mac 编译问题记录
1、mac 编译提示 Unsupported option ‘--no-pie‘ Linux 上用 --no-pie mac 上用 -no-pie 2、mac 找不到 malloc.h 使用 #include <sys/malloc.h> Mac上使用malloc函数报错_mac malloc.h-CSDN博客...

centos 7.9同时安装JDK1.8和openjdk11两个版本
1.使用的原因 在服务器上,有些情况因为有一些系统比较老,所以需要使用JDK8版本,但随着时间的发展,新的软件出来,一般都会使用比较新的JDK版本。所以就出现了我们标题的需求,一个系统内同时安装两个不同的版…...

【JavaEE】HTML
JavaWeb HTML 超文本标记语言 超文本:文本、声音、图片、视频、表格、连接标记:有许许多多的标签组成 vscode开发工具搭建 因为我使用的IDEA是社区版,代码高亮补全缩进都有些问题,使用vscode是最好的选择~ 安装 Visual Stu…...

【数据结构--八大排序】之堆排序
💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …...

c# 中的类
反射 Activator.CreateInstance class Program {static void Main(string[] args){//反射Type t typeof(Student);object o Activator.CreateInstance(t, 1, "FJ");Student stu o as Student;Console.WriteLine(stu.Name);//动态编程dynamic stu2 Activator.Cre…...

基于单片机的煤气泄漏检测报警装置设计
一、项目介绍 煤气泄漏是一种常见的危险情况,可能导致火灾、爆炸和人员伤亡。为了及时发现煤气泄漏并采取相应的安全措施,设计了一种基于单片机的煤气泄漏检测报警装置。 主控芯片采用STM32F103C8T6作为主控芯片,具有强大的计算和控制能力。…...
[导弹打飞机H5动画制作] 导弹每次飞行的随机路线制作
技术核心提示: 第一步:检测引导层插件是否具备,如果没有手工添加: createjs.MotionGuidePlugin.install(); 第二步:增加全局变量: var fValue=0; var iOddEven =0; var missileObj=null; 第三步:填写 第一帧 代码: if (missileObj)stage.removeChild(missileObj);missile…...

OpenCV实现FAST算法角点检测 、ORB算法特征点检测
目录 1 Fast算法 1.1 Fast算法原理 1.2 实现办法 1.2.1 机器学习的角点检测器 1.2.2 非极大值抑制 1.3 代码实现 1.4 结果展示 2 ,ORB算法 2.1代码实现 2.2 结果展示 1 Fast算法 1.1 Fast算法原理 1.2 实现办法 1.2.1 机器学习的角点检测器 1.2.2 …...

【Unity的 Built-in 渲染管线下实现好用的GUI模糊效果_Blur_案例分享(内附源码)】
CGPROGRAM实现好用的GUI模糊效果 实现Blur模糊方式1C#代码如下方式1_Shader代码如下实现Blur模糊方式2方式2_Shader如下实现Blur模糊方式1 其他的模糊效果,在这一篇。 效果如图: 新建一个C#文件,命名为"CommandBlur",打开C#,删除内容,复制粘贴下面的代码:…...

AR智能眼镜:提升现场服务技能、效率与盈利能力的利器(一)
随着技术的不断进步,现场服务组织正朝着远程支持转变,用以解决技能差距和生产力问题,提高员工培训和操作效率,同时为企业提高利润率,创造竞争优势。 本文将探讨增强现实(AR)、辅助现实…...

ChatGPT 在机器学习中的应用
办公室里一个机器人坐在人类旁边,Artstation 上的流行趋势,美丽的色彩,4k,充满活力,蓝色和黄色, DreamStudio出品 一、介绍 大家都知道ChatGPT。它在解释机器学习和深度学习概念方面也非常高效,…...

【JavaEE】锁策略
文章目录 前言1. 乐观锁和悲观锁2. 重量级锁和轻量级锁3. 自旋锁和挂起等待锁4. 公平锁和非公平锁5. 可重入锁和非可重入锁6. 读写锁Java synchronized 分别对应哪些锁策略1. 乐观锁和悲观锁2. 重量级锁和轻量级锁3. 自旋锁和挂起等待锁4. 公平锁和非公平锁5. 可重入锁和非可重…...

在 SDXL 上用 T2I-Adapter 实现高效可控的文生图
T2I-Adapter 是一种高效的即插即用模型,其能对冻结的预训练大型文生图模型提供额外引导。T2I-Adapter 将 T2I 模型中的内部知识与外部控制信号结合起来。我们可以根据不同的情况训练各种适配器,实现丰富的控制和编辑效果。 同期的 ControlNet 也有类似的…...

Python分支结构和循环结构
嗨喽~大家好呀,这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 一.分支结构 分支结构是根据判断条件结果而选择不同向前路径的运行方式,分支结构分为:单分支,二分支和多分支。 1࿰…...
Unity调用API函数对系统桌面和窗口截图
Unity3D调用WINAPI函数对系统窗口截图 引入WINAPI函数调用WINAPI函数进行截图使用例子 引入WINAPI函数 using System; using System.Collections; using System.Runtime.InteropServices; using System.Drawing;[DllImport("user32.dll")]private static extern Int…...
【问题思考总结】CPU怎么访问磁盘?CPU只有32位,最多只能访问4GB的空间吗?
问题 在学习操作系统的时候发现了这样一个问题,32位的CPU寻址空间只有4GB,难道只有4GB的空间可以使用吗?以此为始,我开始了一些思考。 思考 Q1:首先,我似乎混淆了一个概念,内存和外存&#x…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...