当前位置: 首页 > news >正文

排序:基数排序算法分析

1.算法思想

假设长度为n的线性表中每个结点aj的关键字由d元组 ( k j d − 1 , k j d − 2 , k j d − 3 , . . . , k j 1 , k j 0 ) (k_{j}^{d-1},k_{j}^{d-2},k_{j}^{d-3},... ,k_{j}^{1} ,k_{j}^{0}) (kjd1,kjd2,kjd3,...,kj1,kj0)组成,
其中, 0 < = k j i < = r − 1 ( 0 < = j < n , 0 < = i < = d − 1 ) 0<=k_{j}^{i}<=r-1(0<=j<n,0<=i<=d-1) 0<=kji<=r1(0<=j<n,0<=i<=d1),r称为“基数”。

在这里插入图片描述

基数排序得到递减序列的过程如下:

  1. 初始化︰设置r个空队列, Q r − 1 , Q r − 2 , . . . , Q 0 Q_{r-1},Q_{r-2,}...,Q_0 Qr1Qr2,...Q0
  2. 按照各个关键字位权重递增的次序(个、十、百),对d个关键字位分别做“分配”和“收集”
  3. 分配:顺序扫描各个元素,若当前处理的关键字位,则将元素插入Qx队尾,一趟分配耗时O(n)
  4. 收集:把 Q r − 1 , Q r − 2 , . . . , Q 0 Q_{r-1},Q_{r-2},...,Q_0 Qr1,Qr2,...Q0各个队列中的结点依次出队并链接,一趟收集耗时O(r)

例如:收集:得到一个按“百位”递减排列的序列,若“百位”相同则按“十位"递减排列,若“十位”还相同则按“个位”递减排列。

基数排序不是基于“比较”的排序算法

2.算法效率分析

基数排序通常基于链式存储实现:

typedef struct LinkNode {ElemType data;struct LinkNode *next;
} LinkNode, *LinkList;

链式队列设计:

typedef struct {//链式队列LinkNode *front, *rear;//队列的队头和队尾指针
} LinkQueue;
1.空间复杂度

需要r个辅助队列,空间复杂度= O(r)。

2.时间复杂度

一趟分配O(n),一趟收集O(r),总共d趟分配、收集,总的时间复杂度=O(d(n+r))

3.稳定性

基数排序是稳定的。

3.基数排序的应用

1.学生年龄排序

某学校有10000学生,将学生信息按年龄递减排序
生日可拆分为三组关键字:年(1991-2005)、月(1-12)、日(1-31)

权重:年>月>日,年、月、日越大,年龄越小。

  1. 第一趟分配、收集(按“日"递增)
  2. 第二趟分配、收集(按“月”递增)
  3. 第三趟分配、收集(按“年”递增)

若采用基数排序,时间复杂度= O(d(n+r)),约等于 O(30000)
若采用 O ( n 2 ) O(n^2) O(n2)的排序,约等于 O ( 1 0 8 ) O(10^8) O(108)
若采用 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n)的排序,约等于O(140000)

可以看到这里采用基数排序时间复杂度会更低。

2.基数排序适合解决的问题
  • ①数据元素的关键字可以方便地拆分为d组,且d较小(反例:给5个人的身份证号排序)
  • ②每组关键字的取值范围不大,即r较小(反例:给中文人名排序)
  • ③数据元素个数n较大(擅长:给十亿人的身份证号排序)

相关文章:

排序:基数排序算法分析

1.算法思想 假设长度为n的线性表中每个结点aj的关键字由d元组 ( k j d − 1 , k j d − 2 , k j d − 3 , . . . , k j 1 , k j 0 ) (k_{j}^{d-1},k_{j}^{d-2},k_{j}^{d-3},... ,k_{j}^{1} ,k_{j}^{0}) (kjd−1​,kjd−2​,kjd−3​,...,kj1​,kj0​)组成&#xff0c; 其中&am…...

用go实现http服务端和请求端

一、概述 本文旨在学习记录下如何用go实现建立一个http服务器&#xff0c;同时构造一个专用格式的http客户端。 二、代码实现 2.1 构造http服务端 1、http服务处理流程 基于HTTP构建的服务标准模型包括两个端&#xff0c;客户端(Client)和服务端(Server)。HTTP 请求从客户端…...

幂级数和幂级数的和函数有什么关系?

幂级数和幂级数的和函数有什么关系&#xff1f; 本文例子引用自&#xff1a;80_1幂级数运算&#xff0c;逐项积分、求导【小元老师】高等数学&#xff0c;考研数学 求幂级数 ∑ n 1 ∞ 1 n x n \sum\limits_{n1}^{\infty}\frac{1}{n}x^n n1∑∞​n1​xn 的和函数 &#xff…...

Git多账号管理通过ssh 公钥的方式,git,gitlab,gitee

按照目前国内访问git&#xff0c;如果不科学上网&#xff0c;我们很大可能访问会超时。基于这个&#xff0c;所以我现在的git 配置已经增加到了3个了 一个公司gitlab&#xff0c;一个git&#xff0c;一个gitee. 以下基于这个环境&#xff0c;我们来说明下如何创建配置ssh公钥。…...

在nodejs常见的不良做法及其优化解决方案

在nodejs常见的不良做法及其优化解决方案 当涉及到在express和nodejs中开发应用程序时。遵循最佳实践对于确保项目的健壮性、可维护性和安全性至关重要。 在本文中&#xff0c;我们将探索开发人员经常遇到的几种常见的错误做法&#xff0c;并通过代码示例研究优化的最佳做法&…...

关于layui upload上传组件上传文件无反应的问题

最近使用layui upload组件时&#xff0c;碰到了上传文件无反应的问题&#xff0c;感到非常困惑。 因为使用layui upload组件不是一次两次了&#xff0c;之前每次都可以&#xff0c;这次使用同样的配方&#xff0c;同样的姿势&#xff0c;为什么就不行了呢&#xff1f; 照例先…...

容器网络之Flannel

​ 第一个问题位置变化&#xff0c;往往是通过一个称为注册中心的地方统一管理的&#xff0c;这个是应用自己做的。当一个应用启动的时候&#xff0c;将自己所在环境的 IP 地址和端口&#xff0c;注册到注册中心指挥部&#xff0c;这样其他的应用请求它的时候&#xff0c;到指挥…...

SVM(下):如何进行乳腺癌检测?

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。 🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、…...

嵌入式Linux应用开发-第十五章具体单板的按键驱动程序

嵌入式Linux应用开发-第十五章具体单板的按键驱动程序 第十五章 具体单板的按键驱动程序(查询方式)15.1 GPIO操作回顾15.2 AM335X的按键驱动程序(查询方式)15.2.1 先看原理图确定引脚及操作方法15.2.2 再看芯片手册确定寄存器及操作方法15.2.3 编程15.2.3.1 程序框架15.2.3.2 硬…...

MySQL体系结构和四层架构介绍

MySQL体系结构图如下&#xff1a; 四层介绍 1. 连接层&#xff1a; 它的主要功能是处理客户端与MySQL服务器之间的连接(比如Java应用程序通过JDBC连接MySQL)。当客户端应用程序连接到MySQL服务器时&#xff0c;连接层对用户进行身份验证、建立安全连接并管理会话状态。它还处理…...

【产品运营】如何做好B端产品规划

产品规划是基于当下掌握的多维度信息&#xff0c;为追求特定目的&#xff0c;而制定的产品资源投入计划。 产品规划是基于当下掌握的多维度信息&#xff08;客户需求、市场趋势、竞争对手、竞争策略等&#xff09;&#xff0c;为追求特定目的&#xff08;商业增长、客户满意等&…...

ruoyi-启动

1 springboot 版本 git 地址 ruoyi-vue-pro: &#x1f525; 官方推荐 &#x1f525; RuoYi-Vue 全新 Pro 版本&#xff0c;优化重构所有功能。基于 Spring Boot MyBatis Plus Vue & Element 实现的后台管理系统 微信小程序&#xff0c;支持 RBAC 动态权限、数据权限…...

select完成服务器并发

服务器 #include <myhead.h>#define PORT 4399 //端口号 #define IP "192.168.0.191"//IP地址//键盘输入事件 int keybord_events(fd_set readfds); //客户端交互事件 int cliRcvSnd_events(int , struct sockaddr_in*, fd_set *, int *); //客户端连接事件 …...

初级篇—第四章聚合函数

文章目录 聚合函数介绍聚合函数介绍COUNT函数AVG和SUM函数MIN和MAX函数 GROUP BY语法基本使用使用多个列分组WITH ROLLUP HAVING基本使用WHERE和HAVING的对比开发中的选择 SELECT的执行过程查询的结构SQL 的执行原理 练习流程函数 聚合函数介绍 聚合函数作用于一组数据&#x…...

计算机图像处理-中值滤波

非线性滤波 非线性滤波是利用原始图像跟模版之间的一种逻辑关系得到结果&#xff0c;常用的非线性滤波方法有中值滤波和高斯双边滤波&#xff0c;分别对应cv2.medianBlur(src, ksize)方法和cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]])方法。 …...

Golang中的包和模块设计

Go&#xff0c;也被称为Golang&#xff0c;是一种静态类型、编译型语言&#xff0c;因其简洁性和对并发编程的强大支持而受到开发者们的喜爱。Go编程的一个关键方面是其包和模块系统&#xff0c;它允许创建可重用、可维护和高效的代码。本博客文章将深入探讨在Go中设计包和模块…...

web:[极客大挑战 2019]Upload

题目 页面显示为一个上传&#xff0c;猜测上传一句话木马文件 先查看源代码看一下有没有有用的信息&#xff0c;说明要先上传图片&#xff0c;先尝试上传含有一句话木马的图片 构造payload <?php eval($_POST[123]);?> 上传后页面显示为&#xff0c;不能包含<&…...

ICMP差错包

ICMP报文分类 Type Code 描述 查询/差错 0-Echo响应 0 Echo响应报文 查询 3-目的不可达 0 目标网络不可达报文 差错 1 目标主机不可达报文 差错 2 目标协议不可达报文 差错 3 目标端口不可达报文 差错 4 要求分段并设置DF flag标志报文 差错 5 源路由…...

算法基础课第二部分

算法基础课 第四讲 数学知识AcWing1381. 阶乘(同余&#xff0c;因式分解) 质数AcWing 866. 质数的判定---试除法AcWing 868. 质数的判定---埃氏筛AcWing867. 分解质因数---试除法AcWing 197. 阶乘---分解质因数---埃式筛 约数AcWing 869. 求约数---试除法AcWing 870. 约数个数-…...

【数据结构】外部排序、多路平衡归并与败者树、置换-选择排序(生成初始归并段)、最佳归并树算法

目录 1、外部排序 1.1 基本概念 1.2 方法 2、多路平衡归并与败者树 2.1 K路平衡归并 2.2 败者树 3、置换-选择排序&#xff08;生成初始归并段&#xff09;​编辑 4、最佳归并树 4.1 理论基础​编辑 4.2 构造方法 ​编辑 5、各种排序算法的性质 1、外部排序 1.1 基本概…...

抽象工厂模式 创建性模式之五

在看这篇文章之前&#xff0c;请先看看“简单工厂模式”和“工厂方法模式”这两篇博文&#xff0c;会更有助于理解。我们现在已经知道&#xff0c;简单工厂模式就是用一个简单工厂去创建多个产品&#xff0c;工厂方法模式是每一个具体的工厂只生产一个具体的产品&#xff0c;然…...

servlet如何获取PUT和DELETE请求的参数

1. servlet为何不能获取PUT和DELETE请求的参数 Servlet的规范是POST的数据需要转给request.getParameter*()方法&#xff0c;没有规定PUT和DELETE请求也这么做 The Servlet spec requires form data to be available for HTTP POST but not for HTTP PUT or PATCH requests. T…...

【Vue.js】使用Element中的Mock.js搭建首页导航左侧菜单---【超高级教学】

一&#xff0c;Mock.js 1.1 认识Mock.js Mock.js是一个用于前端开发中生成随机数据、模拟接口响应的 JavaScript 库。模拟数据的生成器&#xff0c;用来帮助前端调试开发、进行前后端的原型分离以及用来提高自动化测试效率 总结来说&#xff0c;Element中的Mock.js是一个用于…...

从技术创新到应用实践,百度智能云发起大模型平台应用开发挑战赛!

大模型已经成为未来技术发展方向的重大变革&#xff0c;热度之下更需去虚向实&#xff0c;让技术走进产业场景。在这样的背景下&#xff0c;百度智能云于近期发起了“百度智能云千帆大模型平台应用开发挑战赛”。 挖掘大模型落地应用 千帆大模型平台应用开发挑战赛启动 在不久前…...

简单三步 用GPT-4和Gamma自动生成PPT PDF

1. 用GPT-4 生产PPT内容 我想把下面的文章做成PPT&#xff0c;请你给出详细的大纲和内容 用于谋生的知识&#xff0c;学生主要工作是学习&#xff0c;成年人的工作是养家糊口&#xff0c;这是基本的要求&#xff0c;在这之上&#xff0c;才能有更高的追求。 不要短期期望过高…...

QT设置弹窗显示屏幕中央

Qt设置每次运行弹窗显示屏幕中央 要确保Qt应用程序中的弹出窗口每次都显示在屏幕的中央&#xff0c;您可以使用以下方法&#xff1a; 使用QMessageBox的move方法手动设置窗口位置&#xff1a; #include <QApplication> #include <QMessageBox> #include <QDesk…...

正点原子嵌入式linux驱动开发——STM32MP1启动详解

STM32单片机是直接将程序下载到内部 Flash中&#xff0c;上电以后直接运行内部 Flash中的程序。 STM32MP157内部没有供用户使用的 Flash&#xff0c;系统都是存放在外部 Flash里面的&#xff0c;比如 EMMC、NAND等&#xff0c;因此 STM32MP157上电以后需要从外部 Flash加载程序…...

FPGA的数字钟带校时闹钟报时功能VHDL

名称&#xff1a;基于FPGA的数字钟具有校时闹钟报时功能 软件&#xff1a;Quartus 语言&#xff1a;VHDL 要求&#xff1a; 1、计时功能:这是数字钟设计的基本功能&#xff0c;每秒钟更新一次,并且能在显示屏上显示当前的时间。 2、闹钟功能:如果当前的时间与闹钟设置的时…...

分析各种表达式求值过程

目录 算术运算与赋值 编译器常用的两种优化方案 常量传播 常量折叠 加法 Debug编译选项组下编译后的汇编代码分析 Release开启02执行效率优先 减法 Release版下优化和加法一致&#xff0c;不再赘述 乘法 除法 算术结果溢出 自增和自减 关系运算与逻辑运算 JCC指…...

企业风险管理策略终极指南

企业风险管理不一定是可怕的。企业风险管理是一个模糊且难以定义的主题领域。它涵盖了企业的多种风险和程序&#xff0c;与传统的风险管理有很大不同。 那么&#xff0c;企业风险管理到底是什么&#xff1f;在本文中&#xff0c;我们将确定它是什么&#xff0c;提出两种常见的…...

网站管理建设落实报告/社群营销方案

初次阅读《平凡的世界》实在中考完的那个暑假&#xff0c;高中推荐我们阅读这本书。记得刚刚拿到这本书时&#xff0c;就被它的大块头吓到了&#xff0c;只是觉得太厚了&#xff0c;从来没有阅读过这么厚的书。书一开篇便是描述孙少平打饭的情景&#xff0c;描写了天气的恶劣以…...

链家在线网站是哪个公司做的/百度一下你就知道了官网

首先注册一个代理&#xff08;firewall&#xff09;&#xff1a; options->global options->firewall->add->socks5 在会话中设置成当前的代理&#xff1a; session->Session Options ->ssh2&#xff0c;在下拉菜单选择代理。...

做网站一定要域名嘛/南京百度网站推广

1.首先定义一个接口Pageable 继承ResultSet这个类 并在接口中定义一些自己的方法,具体方法如下: package com.page; import java.sql.ResultSet; public interface Pageable extends ResultSet { /**返回总页数 */ int getPageCount(); /**返回当前页的记录条数 */ int getPa…...

可做长图的网站/it培训班真的有用吗

问题背景 统计日志文件中&#xff0c;上午8点到中午12点之间&#xff0c;关键字出现的行数。 解决办法 步骤1&#xff1a;获取开始和结尾时间点所在的行号 [rootk8s-master ~]# grep -n 08:00 testme.log 5:2022 08:00:00 ldndsnkdalm keyword mlsmls ,lsmsns, [rootk8s-mas…...

前端网站模板/推广引流方法有哪些推广方法

1 Region拆分 一个Region代表一个表的一段Rowkey的数据集合&#xff0c;当Region太大&#xff0c;Master会将其拆分。Region太大会导致读取效率太低&#xff0c;遍历时间太长&#xff0c;通过将大数据拆分到不同机器上&#xff0c;分别查询再聚合&#xff0c;Hbase也被人称为“…...

cms系统哪个好用/湖南百度seo

当我们需要从一个对象里面&#xff0c;每次获取不同属性,那么我们是不是要 单独写N个方法呢&#xff1f; 例如&#xff1a;class 有 下发标识、删除标识、类型标识等等 我们不同的场景只需要查询这个类的一个标识&#xff0c;那么是不是每个查询标识都搞一个方法呢&#xff1…...