图像处理初学者导引---OpenCV 方法演示项目
OpenCV 方法演示项目
项目地址:https://github.com/WangQvQ/opencv-tutorial
项目简介
这个开源项目是一个用于演示 OpenCV 方法的工具,旨在帮助初学者快速理解和掌握 OpenCV 图像处理技术。通过这个项目,你可以轻松地对图像进行各种处理,从灰度化到边缘检测,以及更多其他方法。项目使用 Gradio 创建用户友好的界面,让用户能够轻松选择不同的图像处理方法和参数。
为什么选择这个项目
-
教育性:这个项目的主要目的是教育。它提供了对 OpenCV 方法的实际演示,以帮助初学者更好地理解和掌握这些技术。
-
互动性:通过 Gradio 创建的用户界面,用户可以立即看到不同处理方法的效果,并可以自己调整参数,以更深入地理解每种方法的工作原理。
-
适用广泛:这个项目可以帮助广大初学者,无论是学习计算机视觉、图像处理,还是对 OpenCV 有兴趣的人都会受益。
特性
-
提供了多种 OpenCV 图像处理方法的演示,包括灰度化、反转颜色、平移、直方图均衡化、腐蚀、膨胀、均值滤波、中值滤波、高斯滤波等。
-
支持自定义卷积核,允许用户尝试不同的卷积核来处理图像。
-
提供图像旋转、仿射变换和透射变换的演示,以及选择角度和参数的选项。
-
使用 Gradio 创建用户友好的界面,让用户能够轻松选择不同的图像处理方法和参数。
使用方法
-
获取项目:首先,你需要将这个项目克隆到你的本地计算机上。你可以使用以下命令来获取项目:
git clone https://github.com/WangQvQ/opencv-tutorial.git
-
安装依赖项:确保你已经安装了以下依赖项:
- OpenCV
- Gradio
- NumPy
如果你没有安装它们,你可以使用以下命令安装:
pip install opencv-python-headless=4.7.0.72 gradio=3.1.5 numpy=1.22.4
-
运行项目:使用以下命令来运行项目:
python opencv_demo.py
运行后,你将看到一个网址,通常是
http://localhost:7860
,你可以在浏览器中访问它。 -
使用界面:在浏览器中,你可以上传图像并选择不同的处理方法和参数,然后查看处理后的图像效果。
示例代码
以下是部分方法的代码示例:
# 灰度化处理函数
def grayscale(input_image):gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)return gray_image# 平移图像处理函数
def translate_image(input_image, translation_x, translation_y):rows, cols, _ = input_image.shapetranslation_matrix = np.float32([[1, 0, translation_x], [0, 1, translation_y]])translated_image = cv2.warpAffine(input_image, translation_matrix, (cols, rows))return translated_image# Canny 边缘检测处理函数
def edge_detection(input_image):edges = cv2.Canny(input_image, 100, 200)return edges
贡献
如果你对项目有任何改进或建议,欢迎贡献代码或提出问题。我们欢迎开发者共同改进这个项目,以使其更加有用和友好。
源代码
如果你不想克隆项目,也可以直接运行我的源代码:
import cv2
import gradio as gr
import numpy as np # 原始图像处理函数
def original_image(input_image):return input_image# 灰度化处理函数
def grayscale(input_image):gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)return gray_image# 平移图像处理函数
def translate_image(input_image, translation_x, translation_y):rows, cols, _ = input_image.shapetranslation_matrix = np.float32([[1, 0, translation_x], [0, 1, translation_y]])translated_image = cv2.warpAffine(input_image, translation_matrix, (cols, rows))return translated_image# Canny 边缘检测处理函数
def edge_detection(input_image):edges = cv2.Canny(input_image, 100, 200)return edges# Sobel 边缘检测处理函数
def sobel_edge_detection(input_image):gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)sobel_x = cv2.Sobel(gray_image, cv2.CV_64F, 1, 0, ksize=5)sobel_y = cv2.Sobel(gray_image, cv2.CV_64F, 0, 1, ksize=5)sobel_magnitude = cv2.magnitude(sobel_x, sobel_y)sobel_magnitude = np.uint8(255 * sobel_magnitude / np.max(sobel_magnitude))return sobel_magnitude# 反转颜色处理函数
def invert_colors(input_image):inverted_image = cv2.bitwise_not(input_image)return inverted_image# 腐蚀处理函数
def erosion(input_image, iterations):kernel = np.ones((5, 5), np.uint8)eroded_image = cv2.erode(input_image, kernel, iterations=iterations)return eroded_image# 膨胀处理函数
def dilation(input_image, dilation_iterations):kernel = np.ones((5, 5), np.uint8)dilated_image = cv2.dilate(input_image, kernel, iterations=dilation_iterations)return dilated_image# 均值滤波处理函数
def mean_blur(input_image):mean_blurred_image = cv2.blur(input_image, (5, 5))return mean_blurred_image# 中值滤波处理函数
def median_blur(input_image):median_blurred_image = cv2.medianBlur(input_image, 5)return median_blurred_image# 高斯滤波处理函数
def gaussian_blur(input_image):gaussian_blurred_image = cv2.GaussianBlur(input_image, (5, 5), 0)return gaussian_blurred_image# 双边滤波处理函数
def bilateral_filter(input_image):bilateral_filtered_image = cv2.bilateralFilter(input_image, 9, 75, 75)return bilateral_filtered_image# 方块滤波处理函数
def box_filter(input_image):box_filtered_image = cv2.boxFilter(input_image, -1, (5, 5))return box_filtered_image# 直方图均衡化处理函数
def histogram_equalization(input_image):gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)equalized_image = cv2.equalizeHist(gray_image)return cv2.cvtColor(equalized_image, cv2.COLOR_GRAY2BGR)# 仿射变换处理函数
def affine_transform(input_image):# 创建仿射变换矩阵rows, cols, _ = input_image.shapematrix = cv2.getRotationMatrix2D((cols / 4, rows / 2), 70, 0.5) # 90度旋转和1.5倍缩放result_image = cv2.warpAffine(input_image, matrix, (cols, rows))return result_image# 透射变换处理函数
def perspective_transform(input_image):# 定义四个输入图像的角点坐标rows, cols, _ = input_image.shape# 修改pts1和pts2的值以减小透射变换的弯曲程度pts1 = np.float32([[0, 0], [cols, 0], [0, rows], [cols, rows]])pts2 = np.float32([[30, 30], [cols - 50, 50], [50, rows - 50], [cols - 50, rows - 50]])# 计算投射矩阵matrix = cv2.getPerspectiveTransform(pts1, pts2)# 进行投射变换result_image = cv2.warpPerspective(input_image, matrix, (cols, rows))return result_image# 自定义卷积核
def custom_filter(input_image):kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])return cv2.filter2D(input_image, -1, kernel)# 图像旋转处理函数
def rotate_image(input_image, rotation_angle):rows, cols, _ = input_image.shapematrix = cv2.getRotationMatrix2D((cols / 2, rows / 2), rotation_angle, 1)result_image = cv2.warpAffine(input_image, matrix, (cols, rows))return result_image# 创建 Gradio 接口
input_image = gr.inputs.Image()
method = gr.inputs.Radio(choices=["原图", "灰度化", "反转颜色", "平移", "直方图均衡化", "腐蚀", "膨胀", "均值滤波", "中值滤波", "高斯滤波","双边滤波", "方块滤波", "仿射变换", "透射变换", "图像旋转", "Sobel边缘检测", "Canny边缘检测", "自定义卷积核"], default="原图")rotation_angle = gr.inputs.Slider(minimum=-180, maximum=180, default=45, label="图像旋转: 旋转角度")
iterations = gr.inputs.Slider(minimum=0, maximum=10, step=1, default=1, label="腐蚀: 腐蚀参数")
dilation_iterations = gr.inputs.Slider(minimum=0, maximum=10, step=1, default=1, label="膨胀: 膨胀参数")
translation_x = gr.inputs.Slider(minimum=-200, maximum=200, default=200, label="平移: X轴平移")
translation_y = gr.inputs.Slider(minimum=-200, maximum=200, default=200, label="平移: Y轴平移")output_image = gr.outputs.Image(type="pil")# 创建函数根据下拉菜单的选择来执行不同的方法
def apply_opencv_methods(input_image, method, rotation_angle, iterations, dilation_iterations,translation_x, translation_y):if method == "原图":return original_image(input_image)elif method == "图像旋转":return rotate_image(input_image, rotation_angle)elif method == "腐蚀":return erosion(input_image, iterations)elif method == "膨胀":return dilation(input_image, dilation_iterations)elif method == "Sobel边缘检测":return sobel_edge_detection(input_image)elif method == "平移":return translate_image(input_image, translation_x, translation_y)elif method == "自定义卷积核":return custom_filter(input_image)else:methods = {"灰度化": grayscale,"Canny边缘检测": edge_detection,"反转颜色": invert_colors,"均值滤波": mean_blur,"中值滤波": median_blur,"高斯滤波": gaussian_blur,"双边滤波": bilateral_filter,"方块滤波": box_filter,"仿射变换": affine_transform,"透射变换": perspective_transform,"直方图均衡化": histogram_equalization,}return methods[method](input_image)# 创建 Gradio 接口
gr.Interface(fn=apply_opencv_methods,inputs=[input_image, method, rotation_angle, iterations, dilation_iterations, translation_x,translation_y],outputs=output_image,live=True,title="图像处理初学者导引",description="选择一张图像, 并选择对应方法"
).launch(share=False)
相关文章:

图像处理初学者导引---OpenCV 方法演示项目
OpenCV 方法演示项目 项目地址:https://github.com/WangQvQ/opencv-tutorial 项目简介 这个开源项目是一个用于演示 OpenCV 方法的工具,旨在帮助初学者快速理解和掌握 OpenCV 图像处理技术。通过这个项目,你可以轻松地对图像进行各种处理&a…...

管道-匿名管道
一、管道介绍 管道(Pipe)是一种在UNIX和类UNIX系统中用于进程间通信的机制。它允许一个进程的输出直接成为另一个进程的输入,从而实现数据的流动。管道是一种轻量级的通信方式,用于协调不同进程的工作。 1. 创建和使用管道&#…...

【JavaEE基础学习打卡08】JSP之初次认识say hello!
目录 前言一、JSP技术初识1.动态页面2.JSP是什么3.JSP特点有哪些 二、JSP运行环境配置1.JDK安装2.Tomcat安装 三、编写JSP1.我的第一个JSP2.JSP执行过程3.在IDEA中开发JSP 总结 前言 📜 本系列教程适用于JavaWeb初学者、爱好者,小白白。我们的天赋并不高…...

使用序列到序列深度学习方法自动睡眠阶段评分
深度学习方法,用于使用单通道脑电图进行自动睡眠阶段评分。 def build_firstPart_model(input_var,keep_prob_0.5):# List to store the output of each CNNsoutput_conns []######### CNNs with small filter size at the first layer ########## Convolutionnetw…...

【算法】排序——选择排序和交换排序(快速排序)
主页点击直达:个人主页 我的小仓库:代码仓库 C语言偷着笑:C语言专栏 数据结构挨打小记:初阶数据结构专栏 Linux被操作记:Linux专栏 LeetCode刷题掉发记:LeetCode刷题 算法头疼记:算法专栏…...

Docker 容器监控 - Weave Scope
Author:rab 目录 前言一、环境二、部署三、监控3.1 容器监控 - 单 Host3.2 容器监控 - 多 Host 总结 前言 Docker 容器的监控方式有很多,如 cAdvisor、Prometheus 等。今天我们来看看其另一种监控方式 —— Weave Scope,此监控方法似乎用的人…...
Spring Boot集成redis集群拓扑动态刷新
项目场景: Spring Boot集成Redis集群,使用lettuce连接Cluster集群实例。 问题描述 redis其中一个节点挂了之后,springboot集成redis集群配置信息没有及时刷新,出现读取操作报错。 java.lang.IllegalArgumentException: Connec…...
COCI2022-2023#1 Neboderi
P9032 [COCI2022-2023#1] Neboderi 题目大意 有一个长度为 n n n的序列 h i h_i hi,你需要从中选择一个长度大于等于 k k k的子区间 [ l , r ] [l,r] [l,r],使得 g ( h l h l 1 ⋯ h r ) g\times (h_lh_{l1}\cdotsh_r) g(hlhl1⋯hr)最小&…...

由于找不到d3dx9_43.dll无法继续执行此代码怎么解决?全面解析d3dx9_43.dll
在使用计算机过程中,我们可能会遇到各种各样的问题。其中之一就是d3dx9_43.dll文件丢失的问题。这个问题通常会出现在运行某些应用程序或游戏时,导致程序无法正常启动或运行。那么,如何解决这个问题呢?小编将为您提供一些解决方案…...

Linux--网络编程-字节序
进程间的通信: 管道、消息队列、共享内存、信号、信号量。 特点:都依赖于linux内核。 缺陷:无法多机通信。 一、网络编程: 1、地址:基于网络,ip地址端口号。 端口号作用: 一台拥有ip地址的主机…...

python实现http/https拦截
python实现http拦截 前言:为什么要使用http拦截一、技术调研二、技术选择三、使用方法前言:为什么要使用http拦截 大多数爬虫玩家会直接选择API请求数据,但是有的网站需要解决扫码登录、Cookie校验、数字签名等,这种方法实现时间长,难度高。需求里面不需要高并发,有没有…...

农产品团购配送商城小程序的作用是什么
农产品覆盖稻麦油蛋等多种细分类目,各地区经营商家众多,随着人们生活品质提升,对食物的要求也在提升,绿色无污染无激素的农产品往往受到不少人喜爱,而在销售中,也有不少人选择自建商城线上经营。 通过【雨…...
使用van-dialog二次封装微信小程序模态框
由于微信小程序的wx.showModal不支持富文本内容,无法实现更灵活的展示效果,故需要进行二次封装 实现思路:使用van-dialog以及微信小程序的rich-text实现 代码如下: // index.wxml <van-dialoguse-slottitle"提示"s…...

生鲜蔬果同城配送社区团购小程序商城的作用是什么
生鲜蔬果行业作为市场主要支撑之一,从业商家众多的同时消费者也从不缺,尤其对中高城市,生鲜蔬果除了传统线下超市、市场经营外,线上更是受到大量消费者信任,而很多商家也是自建了生鲜蔬果商城多场景生意经营。 那么通…...

Unity实现设计模式——状态模式
Unity实现设计模式——状态模式 状态模式最核心的设计思路就是将对象的状态抽象出一个接口,然后根据它的不同状态封装其行为,这样就可以实现状态和行为的绑定,最终实现对象和状态的有效解耦。 在实际开发中一般用到FSM有限状态机的实现&…...
差分数组的应用技巧
前缀和技巧 针对的算法场景是不需要对原始数组进行修改的情况下,频繁查询某个区间的累加和。 差分数组 主要适用场景是频繁对原始数组的某个区间的元素进行增减。 相关题目 1094. 拼车 1109. 航班预订统计 370. 区间加法 # 1094. 拼车 class Solution:def carPool…...

斯坦福数据挖掘教程·第三版》读书笔记(英文版)Chapter 10 Mining Social-Network Graphs
来源:《斯坦福数据挖掘教程第三版》对应的公开英文书和PPT。 Chapter 10 Mining Social-Network Graphs The essential characteristics of a social network are: There is a collection of entities that participate in the network. Typically, these entiti…...
DFS:842. 排列数字
给定一个整数 nn,将数字 1∼n1∼n 排成一排,将会有很多种排列方法。 现在,请你按照字典序将所有的排列方法输出。 输入格式 共一行,包含一个整数 nn。 输出格式 按字典序输出所有排列方案,每个方案占一行。 数据…...

pytorch之nn.Conv1d详解
自然语言处理中一个句子序列,一维的,所以使用Conv1d...

H5生成二维码
H5生成二维码: 1.引入js库,可自行点击链接复制使用 <script type"text/javascript" src"http://static.runoob.com/assets/qrcode/qrcode.min.js"></script>2.加入二维码占位区HTML <div id"qrCode">…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...