部署并应用ByteTrack实现目标跟踪
尽管YOLOv8已经集成了ByteTrack算法,但在这里我还是想利用ByteTrack官网的代码,自己实现目标跟踪。
要想应用ByteTrack算法,首先就要从ByteTrack官网上下载并安装。虽然官网上介绍得很简单,只需要区区6行代码,但对于国内用户来说,要想安装ByteTrack,只要这些代码是万万不会成功的。我按照复现经典目标跟踪算法ByteTrack之路:调通第一个demo这个网站介绍的安装过程成功地实现了ByteTrack的部署。该博文介绍得很详细,我在这里就不再赘述了。下面我详细介绍如何应用ByteTrack。
我们首先给出ByteTrack的核心关键代码。
导入ByteTrack:
import sys
sys.path.append(f"D:/ByteTrack")
from yolox.tracker.byte_tracker import BYTETracker
D:\ByteTrack为下载ByteTrack时,其所在的目录。
下面设置ByteTrack的参数:
class BYTETrackerArgs:track_thresh: float = 0.25track_buffer: int = 30match_thresh: float = 0.8aspect_ratio_thresh: float = 3.0min_box_area: float = 1.0mot20: bool = False
track_thresh表示跟踪置信阈值。简单地说,该值越大,被赋予目标跟踪ID的数量越少,也就意味着系统会把不太确定的轨迹抛弃掉。默认值为0.5。
track_buffer用于保留丢失轨迹的帧数。对于没有出现的ID,最多保留该值的帧数。默认值为30。
match_thresh表示跟踪匹配阈值。该值越大,目标与轨迹越容易匹配上。默认值为0.8。
aspect_ratio_thresh表示目标边框长宽之比的阈值。目标长宽之比大于该值时会把该目标滤除掉,这是因为长宽比过大时,显然它不会是任何物体。默认值为1.6。
min_box_area表示目标边框的面积阈值。目标面积小于该值时会把该目标滤除掉。默认值为10。
mot20表示是否使用mot20数据集进行测试。默认值为False。
实例化ByteTrack,并带入参数:
byte_tracker = BYTETracker(BYTETrackerArgs(), frame_rate=fps)
frame_rate表示视频每秒传输的帧数。默认值为30。
得到目标ID:
tracks = byte_tracker.update(outputs, img_info=frame.shape, img_size=frame.shape)
outputs表示目标检测器的输出,ByteTrack需要先进行目标检测,然后才能利用ByteTrack算法实现跟踪,outputs应为二维数组,第一维表示目标,第二维表示该目标的信息,其前四个元素为目标边框的左上角和右下角的坐标,第5个元素为该目标的得分值,一般我们可以为该值赋予目标的置信值。
img_info表示输入视频图像的尺寸。
img_size表示输出图像的尺寸,如果不对视频图像的尺寸进行改变的话,就让该值等于img_info。
输出tracks即为目标跟踪的结果,我们先用print(tracks)看看它的输出:
[OT_2_(1-28), OT_3_(1-28), OT_4_(1-28), OT_7_(26-28)]
从中可以看出,我们共得到了4个目标跟踪结果,它们的ID分别为2、3、4和7,其中ID为2的目标在第1帧开始出现,28为当前帧数,即在第28帧时,我们使用了print(tracks)这个代码。
我们再看看tracks的几个重要属性:
print(tracks[0].tlbr)
print(tracks[0].tlwh)
print(tracks[0].track_id)
print(tracks[0].score)
输出为:
[ 820.39 184.35 852.77 204.6]
[ 820.39 184.35 32.382 20.246]
2
0.7806676
tlbr表示该目标边框的左上角和右下角坐标;tlwh表示该目标边框的左上角坐标和它的长宽;track_id表示该目标的ID;score表示该目标的得分值。
有了目标ID,我们就可以为视频添加各类信息,如为目标添加ID和类别,以及绘制目标边框。我们可以直接利用tracks完成上述操作,但这里会有几个问题:第一由tracks得到的目标边框没有由outputs得到的目标边框准确;第二tracks没有目标类别信息。因此在这里我们还是利用outputs为目标添加各类信息,它要解决的问题是目标的ID是什么。
我们只需比较outputs和tracks的目标尺寸,完成匹配成对,就可以为outputs中的目标赋予ID。我们利用IOU算法来实现尺寸比较,为此我们编写下面函数:
def iou(box: np.ndarray, boxes: np.ndarray):# 计算交集xy_max = np.minimum(boxes[:, 2:], box[2:])xy_min = np.maximum(boxes[:, :2], box[:2])inter = np.clip(xy_max-xy_min, a_min=0, a_max=np.inf)inter = inter[:, 0]*inter[:, 1]# 计算面积area_boxes = (boxes[:, 2]-boxes[:, 0])*(boxes[:, 3]-boxes[:, 1])area_box = (box[2]-box[0])*(box[3]-box[1])return inter/(area_box+area_boxes-inter)
对于这个函数我们不做过多解释,它实现一对多的计算。下面给出它的应用:
for track in tracks:box_iou = iou(track.tlbr, outputs[:,:4])maxindex = np.argmax(box_iou)newoutput = np.append(outputs[maxindex], track.track_id)print(newoutput)
输出为:
[820.86 184.48 852.67 204.75 0.78067 2 2]
[766.21 212.08 808.44 246.9 0.73741 2 3]
[479.06 178.3 517.84 217.07 0.68729 2 4]
[508.42 147.98 529.87 165.88 0.62819 2 7]
每行的最后一个元素就是它的ID。
ByteTrack严重依赖于目标检测器的准确性。ByteTrack利用每个目标的得分值来计算目标跟踪,并赋予ID。我们一般都是把目标检测得到的置信值作为这个得分值传递给ByteTrack,作为其计算的依据。因此当置信值偏低,并且track_thresh偏高时,会出现tracks得到的目标少于outputs的目标,也就出现了有一些目标没有被赋予ID。
为了减少这类问题出现,我们可以人为的为目标置信值赋予更高的值(充分信任目标检测器),然后再传给ByteTrack,即
for output in outputs:output[4] = 0.95
应用ByteTrack进行目标跟踪的关键部分我们都解释清楚了,下面就给出完整的代码,在这里,我们仍然选择YOLOv8作为目标检测器,除了YOLO易于实现外,另一个原因是它的输出与ByteTrack所要求的数据输入的格式完全相同:
import numpy as np
import cv2
from ultralytics import YOLO
import sys
sys.path.append(f"D:/ByteTrack")
from yolox.tracker.byte_tracker import BYTETrackerclass BYTETrackerArgs:track_thresh: float = 0.25 track_buffer: int = 30 match_thresh: float = 0.8 aspect_ratio_thresh: float = 3.0min_box_area: float = 1.0mot20: bool = False model = YOLO('yolov8l.pt')cap = cv2.VideoCapture("D:/track/Highway Traffic.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
fNUMS = cap.get(cv2.CAP_PROP_FRAME_COUNT)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
videoWriter = cv2.VideoWriter("D:/track/mytrack.mp4", fourcc, fps, size)byte_tracker = BYTETracker(BYTETrackerArgs(),frame_rate= fps)def box_label(image, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))cv2.rectangle(image, p1, p2, color, thickness=1, lineType=cv2.LINE_AA)if label:w, h = cv2.getTextSize(label, 0, fontScale=2 / 3, thickness=1)[0] outside = p1[1] - h >= 3p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3cv2.rectangle(image, p1, p2, color, -1, cv2.LINE_AA)cv2.putText(image,label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),0, 2/3, txt_color, thickness=1, lineType=cv2.LINE_AA)def iou(box: np.ndarray, boxes: np.ndarray):xy_max = np.minimum(boxes[:, 2:], box[2:])xy_min = np.maximum(boxes[:, :2], box[:2])inter = np.clip(xy_max-xy_min, a_min=0, a_max=np.inf)inter = inter[:, 0]*inter[:, 1]area_boxes = (boxes[:, 2]-boxes[:, 0])*(boxes[:, 3]-boxes[:, 1])area_box = (box[2]-box[0])*(box[3]-box[1])return inter/(area_box+area_boxes-inter)while cap.isOpened():success, frame = cap.read()if success: results = model(frame,conf=0.5)outputs = results[0].boxes.data.cpu().numpy()if outputs is not None:for output in outputs:output[4] = 0.95tracks = byte_tracker.update(outputs[:,:5], img_info=frame.shape, img_size=frame.shape)for track in tracks:box_iou = iou(track.tlbr, outputs[:,:4])maxindex = np.argmax(box_iou)if outputs[maxindex, 5] == 2:box_label(frame, outputs[maxindex], '#'+str(track.track_id)+' car' , (167, 146, 11))elif outputs[maxindex, 5] == 5:box_label(frame, outputs[maxindex], '#'+str(track.track_id)+' bus', (186, 55, 2))elif outputs[maxindex, 5] == 7:box_label(frame, outputs[maxindex], '#'+str(track.track_id)+' truck', (19, 222, 24))cv2.putText(frame, "https://blog.csdn.net/zhaocj", (25, 50),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)cv2.imshow("ByteTrack", frame)videoWriter.write(frame)if cv2.waitKey(1) & 0xFF == ord("q"):breakelse:breakcap.release()
videoWriter.release()
cv2.destroyAllWindows()
结果为:
ByteTrack
我们也可以再看一个示例:
people
相关文章:
部署并应用ByteTrack实现目标跟踪
尽管YOLOv8已经集成了ByteTrack算法,但在这里我还是想利用ByteTrack官网的代码,自己实现目标跟踪。 要想应用ByteTrack算法,首先就要从ByteTrack官网上下载并安装。虽然官网上介绍得很简单,只需要区区6行代码,但对于国…...
MacOS怎么配置JDK环境变量
1 输入命令看是否配置了JDk 的环境变量:echo $JAVA_HOME 要是什么也没输出 证明是没配置 2 输入命令编辑 sudo vim ~/.bash_profile 然后按 i ,进入编辑模式,粘贴下面的代码,注意:JAVA_HOME后面路径需要改成自己的版…...
Spring Boot 开发16个实用的技巧
当涉及到使用Spring Boot开发应用程序时,以下是16个实用的技巧: 1. **使用Spring Initializr**:Spring Initializr是一个快速创建Spring Boot项目的工具,可以帮助您选择项目依赖和生成项目骨架。 2. **自动配置**:Sp…...
《机器学习实战》学习记录-ch2
PS: 个人笔记,建议不看 原书资料:https://github.com/ageron/handson-ml2 2.1数据获取 import pandas as pd data pd.read_csv(r"C:\Users\cyan\Desktop\AI\ML\handson-ml2\datasets\housing\housing.csv")data.head() data.info()<clas…...
lv7 嵌入式开发-网络编程开发 07 TCP服务器实现
目录 1 函数介绍 1.1 socket函数 与 通信域 1.2 bind函数 与 通信结构体 1.3 listen函数 与 accept函数 2 TCP服务端代码实现 3 TCP客户端代码实现 4 代码优化 5 练习 1 函数介绍 其中read、write、close在IO中已经介绍过,只需了解socket、bind、listen、acc…...
mysql技术文档--阿里巴巴java准则《Mysql数据库建表规约》--结合阿丹理解尝试解读--国庆开卷
阿丹: 国庆快乐呀大家! 在项目开始前一个好的设计、一个健康的表关系,不仅会让开发变的有趣舒服,也会在后期的维护和升级迭代中让系统不断的成长。那么今天就认识和解读一下阿里的准则!! 建表规约 表达是…...
Qt+openCV学习笔记(十六)Qt6.6.0rc+openCV4.8.1+emsdk3.1.37编译静态库
前言: 有段时间没来写文章了,趁编译库的空闲,再写一篇记录文档 WebAssembly的发展逐渐成熟,即便不了解相关技术,web前端也在不经意中使用了相关技术的库,本篇文档记录下如何编译WebAssembly版本的openCV&…...
JUC第十四讲:JUC锁: ReentrantReadWriteLock详解
JUC第十四讲:JUC锁: ReentrantReadWriteLock详解 本文是JUC第十四讲:JUC锁 - ReentrantReadWriteLock详解。ReentrantReadWriteLock表示可重入读写锁,ReentrantReadWriteLock中包含了两种锁,读锁ReadLock和写锁WriteLockÿ…...
在vue3中使用vite-svg-loader插件
vite-svg-loader插件可以让我们像使用vue组件那样使用svg图,使用起来超级方便。 安装 npm install vite-svg-loader --save-dev使用 import svgLoader from vite-svg-loaderexport default defineConfig({plugins: [vue(), svgLoader()] })组件里使用 在路径后加…...
国庆10.4
QT实现TCP服务器客户端 服务器 头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> //服务器头文件 #include <QTcpSocket> //客户端头文件 #include <QList> //链表容器 #include <QMe…...
2023/8/12 下午8:41:46 树状控件guilite
2023/8/12 下午8:41:46 树状控件guilite 2023/8/12 下午8:42:08 树状控件(Tree View)是一种常见的图形用户界面(GUI)元素,它通常用于显示层次结构数据或文件系统的目录结构。Guilite 是一个轻量级的跨平台 GUI 库,支持多种控件,包括树状控件。 在 Guilite 中使用树状…...
BL808学习日志-2-LVGL for M0 and D0
一、lvgl测试环境 对拿到的M1S_DOCK开发板进行开发板测试,博流的官方SDK是支持M0和D0两个内核都进行测试的;但是目前只实现了M0的LVGLBenchmark,测试D0内核中发现很多莫名其妙的问题。一会详细记录。 使用的是开发板自带的SPI显示屏ÿ…...
treectrl类封装 2023/8/13 下午4:07:35
2023/8/13 下午4:07:35 treectrl类封装 2023/8/13 下午4:07:53 TreeCtrl 类是一个常用的图形用户界面控件,用于实现树形结构的展示和交互。以下是一个简单的 TreeCtrl 类的封装示例: python import wxclass MyTreeCtrl(wx.TreeCtrl):def __init__(self, parent):super()…...
Android学习之路(20) 进程间通信
IPC IPC为 (Inter-Process Communication) 缩写,称为进程间通信或跨进程通信,指两个进程间进行数据交换的过程。安卓中主要采用 Binder 进行进程间通信,当然也支持其他 IPC 方式,如:管道,Socket࿰…...
机器学习——KNN算法流程详解(以iris为例)
、 目 录 前情说明 问题陈述 数据说明 KNN算法流程概述 代码实现 运行结果 基于可视化的改进 可视化代码 全部数据可视化总览 分类投票结果 改进后最终代码 前情说明 本书基于《特征工程入门与入门与实践》庄家盛 译版P53页K最近邻(KNN)算…...
国庆假期day5
作业:请写出七层模型及每一层的功能,请绘制三次握手四次挥手的流程图 1.OSI七层模型: 应用层--------提供函 表示层--------表密缩 会话层--------会话 传输层--------进程的接收和发送 网络层--------寻主机 数据链路层----相邻节点的可靠传…...
ES6中的let、const
let ES6中新增了let命令,用来声明变量,和var类似但是也有一定的区别 1. 块级作用域 只能在当前作用域内使用,各个作用域不能互相使用,否则会报错。 {let a 1;var b 1; } console.log(a); // 会报错 console.log(b); // 1为什…...
Python 列表操作指南3
示例,将新列表中的所有值设置为 ‘hello’: newlist [hello for x in fruits]表达式还可以包含条件,不像筛选器那样,而是作为操纵结果的一种方式: 示例,返回 “orange” 而不是 “banana”: …...
三个要点,掌握Spring Boot单元测试
单元测试是软件开发中不可或缺的重要环节,它用于验证软件中最小可测试单元的准确性。结合运用Spring Boot、JUnit、Mockito和分层架构,开发人员可以更便捷地编写可靠、可测试且高质量的单元测试代码,确保软件的正确性和质量。 一、介绍 本文…...
【nginx】Nginx配置:
文章目录 一、什么是Nginx:二、为什么使用Nginx:三、如何处理请求:四、什么是正向代理和反向代理:五、nginx 启动和关闭:六、目录结构:七、配置文件nginx.conf:八、location:九、单页…...
CSS3与HTML5
box-sizing content-box:默认,宽高包不含边框和内边距 border-box:也叫怪异盒子,宽高包含边框和内边距 动画:移动translate,旋转、transform等等 走马灯:利用动画实现animation:from…...
redis的简单使用
文章目录 环境安装与配置redis发布-订阅相关命令redis发布-订阅的客户端编程redis的订阅发布的例子 环境安装与配置 sudo apt-get install redis-server # ubuntu命令安装redis服务ubuntu通过上面命令安装完redis,会自动启动redis服务,通过ps命令确认&a…...
Windows下启动freeRDP并自适应远端桌面大小
几个二进制文件 xfreerdp # Linux下的,an X11 Remote Desktop Protocol (RDP) client which is part of the FreeRDP project wfreerdp.exe # Windows下的,freerdp2.0 主程序,freerdp3.0将废弃 sdl-freerdp.exe # Windows下的&…...
ES6中的数值扩展
1. 二进制和八进制的表示法 二进制和八进制的前缀分别为0b(或0B)和0o(或0O)表示 在ES5的严格模式下,八进制不再允许使用前缀0表示 如果要将0b和0x前缀的字符串数值转为十进制,要使用Number方法 Number(0b111); // 7 Number(0o10); // 82. Number.isF…...
自定义注解实现Redis分布式锁、手动控制事务和根据异常名字或内容限流的三合一的功能
自定义注解实现Redis分布式锁、手动控制事务和根据异常名字或内容限流的三合一的功能 文章目录 [toc] 1.依赖2.Redisson配置2.1单机模式配置2.2主从模式2.3集群模式2.4哨兵模式 3.实现3.1 RedisConfig3.2 自定义注解IdempotentManualCtrlTransLimiterAnno3.3自定义切面Idempote…...
Linux:minishell
目录 1.实现逻辑 2.代码及效果展示 1.打印字符串提示用户输入指令 2.父进程拆解指令 3.子进程执行指令,父进程等待结果 4.效果 3.实现过程中遇到的问题 1.打印字符串的时候不显示 2.多换了一行 3.cd路径无效 4.优化 1.ll指令 2.给文件或目录加上颜色 代码链接 模…...
STM32驱动步进电机
前言 (1)本章介绍用stm32驱动42步进电机,将介绍需要准备的硬件器材、所需芯片资源以及怎么编程及源代码等等。 (2)实验效果:按下按键,步进电机顺时针或逆时针旋转90度。 (3ÿ…...
计算机视觉——飞桨深度学习实战-深度学习网络模型
深度学习网络模型的整体架构主要数据集、模型组网以及学习优化过程三部分,本章主要围绕着深度学习网络模型的算法架构、常见模型展开了详细介绍,从经典的深度学习网络模型以CNN、RNN为代表,到为了解决显存不足、实时性不够等问题的轻量化网络…...
用c动态数组(不用c++vector)实现手撸神经网咯230901
用c语言动态数组(不用c++的vector)实现:输入数据inputs = { {1, 1}, {0,0},{1, 0},{0,1} };目标数据targets={0,0,1,1}; 测试数据 inputs22 = { {1, 0}, {1,1},{0,1} }; 构建神经网络,例如:NeuralNetwork nn({ 2, 4,3,1 }); 则网络有四层、输入层2个nodes、输出层1个节点、第…...
视频讲解|基于DistFlow潮流的配电网故障重构代码
目录 1 主要内容 2 视频链接 1 主要内容 该视频为基于DistFlow潮流的配电网故障重构代码讲解内容,对应的资源下载链接为基于DistFlow潮流的配电网故障重构(输入任意线路),对该程序进行了详尽的讲解,基本做到句句分析和讲解(讲解…...
wordpress首页底部模板修改/上海百度竞价点击软件
目录 一、UDP简介 二、UDP的特点 2.1 面向无连接 2.2 有单播,多播,广播的功能 2.3 UDP是面向报文的 2.4 不可靠性(无拥塞控制) 2.5 首部开销小,传输数据报文时是很高效的 三、UDP首部 四、UDP校验 4.1 UDP校验和 4.2 …...
如何做微网站平台/百度世界排名
ios操作系统的流畅度非常的高,因此人们都愿意购买 苹果 的手机。大家都知道苹果智能手机的售价是非常昂贵的,并不是社会上每一个人都可以负担得起的。有非常多的消费者为了可以达到非常好的操作体验,因此有非常多人们都会购买安卓智能手机&am…...
wordpress 每日一文/品牌推广策略与方式
阿里西西 标准之路转载于:https://www.cnblogs.com/Peter-Youny/archive/2012/08/10/2632035.html...
旅游网站建设色彩搭配表/温州seo服务
为了提供对静态资源文件(图片、csss文件、javascript文件)的服务,请使用Express内置的中间函数 express.static 。传递一个包含静态资源的目录给 express.static 中间件用于立刻开始提供文件。比如用以下代码来提供public目录下的图片、css文件和javascript文件&…...
八方建设集团有限公司网站/b站推广2023
React Native 的社区发展以及在移动开发领域的火热,大大提高了我们学习和实践的热情,不过目前的开发调试模式依然是一边开着模拟器一边编码,模拟器开启「即时刷新」进行可视化调试。 最近 Expo 发布了一个开发时真机即时预览的工具࿱…...
程序员代做网站违法/企业网络推广平台
文|佘凯文 来源|智能相对论(aixdlun) 618电商大战已经落幕,智能门锁行业看起来盈利了集体狂欢。 但这样的成绩并不足以让行业放松,而且这只是小部分企业的狂欢,其他95%以上的企业并未搭上电商节的东风。 山寨成风&…...