1.填空题 进制转换Oct.2023
原题
部分可能会有用处的知识:
p p p进制转十进制:
假设有一个 p p p进制数,个位是 a 0 a_0 a0,向高位依次是 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an,向低位依次是 b 1 , b 2 , b 3 , . . . , b k b_1,b_2,b_3,...,b_k b1,b2,b3,...,bk,那么它的整数部分就相当于 10 10 10进制中的
Σ i : 0 → n a i p i = a 0 × p 0 + a 1 × p 1 + . . . + a n × p n \Sigma_{i:0\rightarrow n}a_ip^i=a_0\times p^0+a_1\times p^1+...+a_n\times p^n Σi:0→naipi=a0×p0+a1×p1+...+an×pn
相应的,小数部分是
Σ i : 1 → n b i p − i = b 1 × p − 1 + b 2 × p − 2 + . . . + b n × p − n \Sigma_{i:1\rightarrow n}b_ip^{-i}=b_1\times p^{-1}+b_2\times p^{-2} +...+b_n\times p^{-n} Σi:1→nbip−i=b1×p−1+b2×p−2+...+bn×p−n
十进制转 p p p进制以此类推。例如,将 10 0 10 100_{10} 10010转换为 N 16 N_{16} N16:
- 将 100 100 100除以 16 16 16,得商 6 6 6,余数 4 4 4; ∴ \therefore ∴个位是 4 4 4
- 再将 6 6 6除以 16 16 16,得商 0 0 0,余数 6 6 6; ∴ 4 \therefore 4 ∴4的高一位是 6 6 6。
- ∴ 10 0 10 = 6 4 16 \therefore 100_{10}=64_{16} ∴10010=6416。
那么,如果想把 p p p进制和 q q q进制相转换,只需要借助十进制过渡一下即可。
在这里,我们约定, A = 10 , B = 11 , C = 12 , . . . , Z = 35 A=10,B=11,C=12,...,Z=35 A=10,B=11,C=12,...,Z=35
将 102 4 1048576 1024^{1048576} 10241048576进制下的 2 0 + 2 1 + 2 2 + . . . + 2 10485759 2 10485760 \dfrac{2^0+2^1+2^2+...+2^{10485759}}{2^{10485760}} 21048576020+21+22+...+210485759转为 [ ( 102 4 524288 + 1 ) ( 102 4 262144 + 1 ) ( 102 4 131072 + 1 ) ( 102 4 65536 + 1 ) . . ( 1024 − 1 ) + 2 ] [(1024^{524288}+1)(1024^{262144}+1)(1024^{131072}+1)(1024^{65536}+1)..(1024-1)+2] [(1024524288+1)(1024262144+1)(1024131072+1)(102465536+1)..(1024−1)+2]进制下的数字。
(为书写方便,约定 α = 1024 , β = 102 4 1048576 \alpha = 1024,\beta = 1024^{1048576} α=1024,β=10241048576, γ 1 = β − 1 \gamma_1=\beta-1 γ1=β−1, γ i = β − i \gamma_i=\beta-i γi=β−i。例如, 1024 × 1025 + 1024 1024\times1025+1024 1024×1025+1024在 1025 1025 1025进制中可以写作 α α \alpha\alpha αα)
解
对于 p p p进制显然 1 p − 1 = 0.1111111.... \frac{1}{p-1}=0.1111111.... p−11=0.1111111....
证明
p p p进制中,
0.11111... = p − 1 + p − 2 + . . . L e t S = p − 1 + p − 2 + . . . ∴ p S = S + 1 , p S − S = 1 ∴ ( p − 1 ) S = 1 ∴ S = 1 p − 1 0.11111...=p^{-1}+p^{-2}+...\\ Let\ S=p^{-1}+p^{-2}+...\\ \therefore pS=S+1,pS-S=1\\ \therefore (p-1)S=1\\ \therefore S=\frac{1}{p-1} 0.11111...=p−1+p−2+...Let S=p−1+p−2+...∴pS=S+1,pS−S=1∴(p−1)S=1∴S=p−11
令 p = 102 4 1048576 p=1024^{1048576} p=10241048576,化简原分式得 p − 1 p \frac{p-1}{p} pp−1
令 s = p + 1 = 102 4 1048576 + 1 , p = s − 1 s=p+1=1024^{1048576}+1,p=s-1 s=p+1=10241048576+1,p=s−1,原问题等同于求 s s s进制下的 s − 2 s − 1 \frac{s-2}{s-1} s−1s−2。
那么答案显然为 ( 102 4 1048576 − 1 ) × 0.1111... = 0. γ 1 γ 1 γ 1 . . . (1024^{1048576}-1)\times0.1111...=0.\gamma_1\gamma_1\gamma_1... (10241048576−1)×0.1111...=0.γ1γ1γ1...。
相关文章:
1.填空题 进制转换Oct.2023
原题 部分可能会有用处的知识: p p p进制转十进制: 假设有一个 p p p进制数,个位是 a 0 a_0 a0,向高位依次是 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an,向低位依次是 b 1 , b 2 , b 3 , . . . …...
node 解决多版本配置 error:03000086:digital 引起的问题 已解决
在日常后端工作中,难免会安装前端的项目,今天有旧项目需要维护,但是 提示 node版本过高,或者不是长维护版本,部分分享说,加 opensll 过滤能解决,但是 还是不行,索性来这个 底朝天的找…...
前端面试题: js中对比两个对象的值是否相等? for..in 和 for...of的区别?
我去面试的时候会问这个问题, 而且发现不管是初级还是工作一段时间的小伙伴 都会说的不是很清晰 比如第一道题哈: 首先大部分人都会想起来 我们用JSON.stringify() 进行转换,查看两个是否相等 你敢说我下面的对象 值不是想等的吗。 但是你用…...
第十七章:Java连接数据库jdbc(java和myql数据库连接)
1.进入命令行:输入cmd,以管理员身份运行 windowsr 2.登录mysql 3.创建库和表 4.使用Java命令查询数据库操作 添加包 导入包的快捷键 选择第四个 找到包的位置 导入成功 创建java项目 二:连接数据库: 第一步:注册驱动…...
Unity基于种子与地块概率的开放世界2D地图生成
public class BuildingGen : MonoBehaviour {public int[] Building;//存储要生成的地块代码public int[] Probability;//存储概率public double seed;public int width 100;public int height 100;public float noiseScale 0.1f; //噪声缩放倍数private int[,] frequencyM…...
5.Vectors Transformation Rules
在上节,有个问题:向量分量的转换方式 与 新旧基底的转换方式相反 用例子来感受一下, 空间中一向量V,即该空间的一个基底:e1、e2 v e1 e2 现把基底 e1 、 e2 放大两倍。变成 基向量放大了两倍, 但对于…...
聊聊httpclient的CPool
序 本文主要研究一下httpclient的CPool ConnPool org/apache/http/pool/ConnPool.java public interface ConnPool<T, E> {/*** Attempts to lease a connection for the given route and with the given* state from the pool.** param route route of the connecti…...
B2主题优化:WordPress文章每次访问随机增加访问量
老站长都知道,一个新站刚开始创建,内容也不多的时候,用户进来看到文章浏览量要么是0,要么是 个位数,非常影响体验,就会有一种“这个网站没人气,看来不行”的感觉。 即使你的内容做的很好&#x…...
大模型部署手记(1)ChatGLM2+Windows GPU
1.简介: 组织机构:智谱/清华 代码仓:https://github.com/THUDM/ChatGLM2-6B 模型:THUDM/chatglm2-6b 下载:https://huggingface.co/THUDM/chatglm2-6b 镜像下载:https://aliendao.cn/models/THUDM/chat…...
Rust Rocket: 构建Restful服务项目实战
前言 这几天我的笔记系统开发工作进入了搬砖期,前端基于Yew,后端基于Rocket。关于Rocket搭建Restful服务,官方也有介绍,感觉很多细节不到位。因此我打算花2到3天的时间来整理一下,也算是对自己的一个交代。 对于有一…...
苹果签名有多少种类之TF签名(TestFlight签名)是什么?优势是什么?什么场合需要应用到?
(一)TestFlight 能够让您:邀请内部和外部的测试人员为应用程序提供反馈。 跟踪应用程序在测试过程中发现的 bug 和用户体验问题。 收集 Crash 报告,了解应用程序在真实设备上的运行状况。 要使用 TestFlight,您可以按照…...
如何将图片存到数据库(以mysql为例), 使用ORM Bee更加简单
如何将图片存到数据库 1. 创建数据库: 2. 生成Javabean public class ImageExam implements Serializable {private static final long serialVersionUID 1596686274309L;private Integer id;private String name; // private Blob image;private InputStream image; //将In…...
【“栈、队列”的应用】408数据结构代码
王道数据结构强化课——【“栈、队列”的应用】代码,持续更新 链式存储栈(单链表实现),并基于上述定义,栈顶在链头,实现“出栈、入栈、判空、判满”四个基本操作 #include <stdio.h> #include <…...
es的nested查询
一、一层嵌套 mapping: PUT /nested_example {"mappings": {"properties": {"name": {"type": "text"},"books": {"type": "nested","properties": {"title": {"t…...
<一>Qt斗地主游戏开发:开发环境搭建--VS2019+Qt5.15.2
1. 开发环境概述 对于Qt的开发环境来说,主流编码IDE界面一般有两种:Qt Creator或VSQt。为了简单起见,这里的操作系统限定为windows,编译器也通用VS了。Qt版本的话自己选择就可以了,当然VS的版本也是依据Qt版本来选定的…...
python:进度条的使用(tqdm)
摘要:为python程序进度条,可以知道程序运行进度。 python中,常用的进度条模块是tqdm,将介绍tqdm的安装和使用 1、安装tqdm: pip install tqdm2、tqdm的使用: (1)在for循环中的使用࿱…...
Java类型转换和类型提升
目录 一、类型转换 1.1 自动类型转换(隐式) 1.1.1 int 与 long 之间 1.1.2 float 与 double 之间 1.1.3 int 与 byte 之间 1.2 强制类型转换(显示) 1.2.1 int 与 long 之间 1.2.2 float 与 double 之间 1.2.3 int 与 d…...
C# 读取 Excel xlsx 文件,显示在 DataGridView 中
编写 read_excel.cs 如下 using System; using System.Collections.Generic; using System.ComponentModel; using System.IO; using System.Data; using System.Linq; using System.Text; using System.Data.OleDb;namespace ReadExcel {public partial class Program{static…...
Docker02基本管理
目录 1、Docker 网络 1.1 Docker 网络实现原理 1.2 Docker 的网络模式 1.3 网络模式详解 1.4 资源控制 1.5 进行CPU压力测试 1.6 清理docker占用的磁盘空间 1.7 生产扩展 1、Docker 网络 1.1 Docker 网络实现原理 Docker使用Linux桥接,在宿主机虚拟一个Docke…...
Scala第十章
Scala第十章 章节目标 1.数组 2.元组 3.列表 4.集 5.映射 6.迭代器 7.函数式编程 8.案例:学生成绩单 scala总目录 文档资料下载...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
