当前位置: 首页 > news >正文

1.填空题 进制转换Oct.2023

原题

部分可能会有用处的知识:

p p p进制转十进制:

假设有一个 p p p进制数,个位是 a 0 a_0 a0,向高位依次是 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an,向低位依次是 b 1 , b 2 , b 3 , . . . , b k b_1,b_2,b_3,...,b_k b1,b2,b3,...,bk,那么它的整数部分就相当于 10 10 10进制中的
Σ i : 0 → n a i p i = a 0 × p 0 + a 1 × p 1 + . . . + a n × p n \Sigma_{i:0\rightarrow n}a_ip^i=a_0\times p^0+a_1\times p^1+...+a_n\times p^n Σi:0naipi=a0×p0+a1×p1+...+an×pn
相应的,小数部分是
Σ i : 1 → n b i p − i = b 1 × p − 1 + b 2 × p − 2 + . . . + b n × p − n \Sigma_{i:1\rightarrow n}b_ip^{-i}=b_1\times p^{-1}+b_2\times p^{-2} +...+b_n\times p^{-n} Σi:1nbipi=b1×p1+b2×p2+...+bn×pn
十进制转 p p p进制以此类推。

例如,将 10 0 10 100_{10} 10010转换为 N 16 N_{16} N16

  1. 100 100 100除以 16 16 16,得商 6 6 6,余数 4 4 4 ∴ \therefore 个位是 4 4 4
  2. 再将 6 6 6除以 16 16 16,得商 0 0 0,余数 6 6 6 ∴ 4 \therefore 4 4的高一位是 6 6 6
  3. ∴ 10 0 10 = 6 4 16 \therefore 100_{10}=64_{16} 10010=6416

那么,如果想把 p p p进制和 q q q进制相转换,只需要借助十进制过渡一下即可。

在这里,我们约定, A = 10 , B = 11 , C = 12 , . . . , Z = 35 A=10,B=11,C=12,...,Z=35 A=10,B=11,C=12,...,Z=35

102 4 1048576 1024^{1048576} 10241048576进制下的 2 0 + 2 1 + 2 2 + . . . + 2 10485759 2 10485760 \dfrac{2^0+2^1+2^2+...+2^{10485759}}{2^{10485760}} 21048576020+21+22+...+210485759转为 [ ( 102 4 524288 + 1 ) ( 102 4 262144 + 1 ) ( 102 4 131072 + 1 ) ( 102 4 65536 + 1 ) . . ( 1024 − 1 ) + 2 ] [(1024^{524288}+1)(1024^{262144}+1)(1024^{131072}+1)(1024^{65536}+1)..(1024-1)+2] [(1024524288+1)(1024262144+1)(1024131072+1)(102465536+1)..(10241)+2]进制下的数字。
(为书写方便,约定 α = 1024 , β = 102 4 1048576 \alpha = 1024,\beta = 1024^{1048576} α=1024,β=10241048576, γ 1 = β − 1 \gamma_1=\beta-1 γ1=β1, γ i = β − i \gamma_i=\beta-i γi=βi。例如, 1024 × 1025 + 1024 1024\times1025+1024 1024×1025+1024 1025 1025 1025进制中可以写作 α α \alpha\alpha αα


对于 p p p进制显然 1 p − 1 = 0.1111111.... \frac{1}{p-1}=0.1111111.... p11=0.1111111....

证明

p p p进制中,
0.11111... = p − 1 + p − 2 + . . . L e t S = p − 1 + p − 2 + . . . ∴ p S = S + 1 , p S − S = 1 ∴ ( p − 1 ) S = 1 ∴ S = 1 p − 1 0.11111...=p^{-1}+p^{-2}+...\\ Let\ S=p^{-1}+p^{-2}+...\\ \therefore pS=S+1,pS-S=1\\ \therefore (p-1)S=1\\ \therefore S=\frac{1}{p-1} 0.11111...=p1+p2+...Let S=p1+p2+...pS=S+1,pSS=1(p1)S=1S=p11

p = 102 4 1048576 p=1024^{1048576} p=10241048576,化简原分式得 p − 1 p \frac{p-1}{p} pp1
s = p + 1 = 102 4 1048576 + 1 , p = s − 1 s=p+1=1024^{1048576}+1,p=s-1 s=p+1=10241048576+1,p=s1,原问题等同于求 s s s进制下的 s − 2 s − 1 \frac{s-2}{s-1} s1s2
那么答案显然为 ( 102 4 1048576 − 1 ) × 0.1111... = 0. γ 1 γ 1 γ 1 . . . (1024^{1048576}-1)\times0.1111...=0.\gamma_1\gamma_1\gamma_1... (102410485761)×0.1111...=0.γ1γ1γ1...

相关文章:

1.填空题 进制转换Oct.2023

原题 部分可能会有用处的知识: p p p进制转十进制: 假设有一个 p p p进制数,个位是 a 0 a_0 a0​,向高位依次是 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1​,a2​,...,an​,向低位依次是 b 1 , b 2 , b 3 , . . . …...

node 解决多版本配置 error:03000086:digital 引起的问题 已解决

在日常后端工作中,难免会安装前端的项目,今天有旧项目需要维护,但是 提示 node版本过高,或者不是长维护版本,部分分享说,加 opensll 过滤能解决,但是 还是不行,索性来这个 底朝天的找…...

前端面试题: js中对比两个对象的值是否相等? for..in 和 for...of的区别?

我去面试的时候会问这个问题, 而且发现不管是初级还是工作一段时间的小伙伴 都会说的不是很清晰 比如第一道题哈: 首先大部分人都会想起来 我们用JSON.stringify() 进行转换,查看两个是否相等 你敢说我下面的对象 值不是想等的吗。 但是你用…...

第十七章:Java连接数据库jdbc(java和myql数据库连接)

1.进入命令行:输入cmd,以管理员身份运行 windowsr 2.登录mysql 3.创建库和表 4.使用Java命令查询数据库操作 添加包 导入包的快捷键 选择第四个 找到包的位置 导入成功 创建java项目 二:连接数据库: 第一步:注册驱动…...

Unity基于种子与地块概率的开放世界2D地图生成

public class BuildingGen : MonoBehaviour {public int[] Building;//存储要生成的地块代码public int[] Probability;//存储概率public double seed;public int width 100;public int height 100;public float noiseScale 0.1f; //噪声缩放倍数private int[,] frequencyM…...

5.Vectors Transformation Rules

在上节,有个问题:向量分量的转换方式 与 新旧基底的转换方式相反 用例子来感受一下, 空间中一向量V,即该空间的一个基底:e1、e2 v e1 e2 现把基底 e1 、 e2 放大两倍。变成 基向量放大了两倍, 但对于…...

聊聊httpclient的CPool

序 本文主要研究一下httpclient的CPool ConnPool org/apache/http/pool/ConnPool.java public interface ConnPool<T, E> {/*** Attempts to lease a connection for the given route and with the given* state from the pool.** param route route of the connecti…...

B2主题优化:WordPress文章每次访问随机增加访问量

老站长都知道&#xff0c;一个新站刚开始创建&#xff0c;内容也不多的时候&#xff0c;用户进来看到文章浏览量要么是0&#xff0c;要么是 个位数&#xff0c;非常影响体验&#xff0c;就会有一种“这个网站没人气&#xff0c;看来不行”的感觉。 即使你的内容做的很好&#x…...

大模型部署手记(1)ChatGLM2+Windows GPU

1.简介&#xff1a; 组织机构&#xff1a;智谱/清华 代码仓&#xff1a;https://github.com/THUDM/ChatGLM2-6B 模型&#xff1a;THUDM/chatglm2-6b 下载&#xff1a;https://huggingface.co/THUDM/chatglm2-6b 镜像下载&#xff1a;https://aliendao.cn/models/THUDM/chat…...

Rust Rocket: 构建Restful服务项目实战

前言 这几天我的笔记系统开发工作进入了搬砖期&#xff0c;前端基于Yew&#xff0c;后端基于Rocket。关于Rocket搭建Restful服务&#xff0c;官方也有介绍&#xff0c;感觉很多细节不到位。因此我打算花2到3天的时间来整理一下&#xff0c;也算是对自己的一个交代。 对于有一…...

苹果签名有多少种类之TF签名(TestFlight签名)是什么?优势是什么?什么场合需要应用到?

&#xff08;一&#xff09;TestFlight 能够让您&#xff1a;邀请内部和外部的测试人员为应用程序提供反馈。 跟踪应用程序在测试过程中发现的 bug 和用户体验问题。 收集 Crash 报告&#xff0c;了解应用程序在真实设备上的运行状况。 要使用 TestFlight&#xff0c;您可以按照…...

如何将图片存到数据库(以mysql为例), 使用ORM Bee更加简单

如何将图片存到数据库 1. 创建数据库: 2. 生成Javabean public class ImageExam implements Serializable {private static final long serialVersionUID 1596686274309L;private Integer id;private String name; // private Blob image;private InputStream image; //将In…...

【“栈、队列”的应用】408数据结构代码

王道数据结构强化课——【“栈、队列”的应用】代码&#xff0c;持续更新 链式存储栈&#xff08;单链表实现&#xff09;&#xff0c;并基于上述定义&#xff0c;栈顶在链头&#xff0c;实现“出栈、入栈、判空、判满”四个基本操作 #include <stdio.h> #include <…...

es的nested查询

一、一层嵌套 mapping: PUT /nested_example {"mappings": {"properties": {"name": {"type": "text"},"books": {"type": "nested","properties": {"title": {"t…...

<一>Qt斗地主游戏开发:开发环境搭建--VS2019+Qt5.15.2

1. 开发环境概述 对于Qt的开发环境来说&#xff0c;主流编码IDE界面一般有两种&#xff1a;Qt Creator或VSQt。为了简单起见&#xff0c;这里的操作系统限定为windows&#xff0c;编译器也通用VS了。Qt版本的话自己选择就可以了&#xff0c;当然VS的版本也是依据Qt版本来选定的…...

python:进度条的使用(tqdm)

摘要&#xff1a;为python程序进度条&#xff0c;可以知道程序运行进度。 python中&#xff0c;常用的进度条模块是tqdm&#xff0c;将介绍tqdm的安装和使用 1、安装tqdm: pip install tqdm2、tqdm的使用&#xff1a; &#xff08;1&#xff09;在for循环中的使用&#xff1…...

Java类型转换和类型提升

目录 一、类型转换 1.1 自动类型转换&#xff08;隐式&#xff09; 1.1.1 int 与 long 之间 1.1.2 float 与 double 之间 1.1.3 int 与 byte 之间 1.2 强制类型转换&#xff08;显示&#xff09; 1.2.1 int 与 long 之间 1.2.2 float 与 double 之间 1.2.3 int 与 d…...

C# 读取 Excel xlsx 文件,显示在 DataGridView 中

编写 read_excel.cs 如下 using System; using System.Collections.Generic; using System.ComponentModel; using System.IO; using System.Data; using System.Linq; using System.Text; using System.Data.OleDb;namespace ReadExcel {public partial class Program{static…...

Docker02基本管理

目录 1、Docker 网络 1.1 Docker 网络实现原理 1.2 Docker 的网络模式 1.3 网络模式详解 1.4 资源控制 1.5 进行CPU压力测试 1.6 清理docker占用的磁盘空间 1.7 生产扩展 1、Docker 网络 1.1 Docker 网络实现原理 Docker使用Linux桥接&#xff0c;在宿主机虚拟一个Docke…...

Scala第十章

Scala第十章 章节目标 1.数组 2.元组 3.列表 4.集 5.映射 6.迭代器 7.函数式编程 8.案例&#xff1a;学生成绩单 scala总目录 文档资料下载...

10.4 校招 实习 内推 面经

绿泡*泡&#xff1a; neituijunsir 交流裙 &#xff0c;内推/实习/校招汇总表格 1、校招 | 集度2024届秋招正式启动&#xff08;内推&#xff09; 校招 | 集度2024届秋招正式启动&#xff08;内推&#xff09; 2、校招 | 道通科技2024秋季校园招聘正式启动啦&#xff01; …...

从0开始深入理解并发、线程与等待通知机制(中)

一&#xff0c;深入学习 Java 的线程 线程的状态/生命周期 Java 中线程的状态分为 6 种&#xff1a; 1. 初始(NEW)&#xff1a;新创建了一个线程对象&#xff0c;但还没有调用 start()方法。 2. 运行(RUNNABLE)&#xff1a;Java 线程中将就绪&#xff08;ready&#xff09;和…...

UE5报错及解决办法

1、编译报错&#xff0c;内容如下&#xff1a; Unable to build while Live Coding is active. Exit the editor and game, or press CtrlAltF11 if iterating on code in the editor or game 解决办法 取消Enable Live Coding勾选...

怎么通过docker/portainer部署vue项目

这篇文章分享一下如何通过docker将vue项目打包成镜像文件&#xff0c;并使用打包的镜像在docker/portainer上部署运行&#xff0c;写这篇文章参考了vue-cli和docker的官方文档。 首先&#xff0c;阅读vue-cli关于docker部署的说明&#xff0c;上面提供了关键的几个步骤。 从上面…...

【面试经典150 | 矩阵】旋转图像

文章目录 写在前面Tag题目来源题目解读解题思路方法一&#xff1a;原地旋转方法二&#xff1a;翻转代替旋转 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法&#xff0c;两到三天更新一篇文章&#xff0c;欢迎催更…… 专栏内容以分析题目为主&#xff0c;并附带…...

机器人制作开源方案 | 家庭清扫拾物机器人

作者&#xff1a;罗诚、李旭洋、胡旭、符粒楷 单位&#xff1a;南昌交通学院 人工智能学院 指导老师&#xff1a;揭吁菡 在家庭中我们有时无法到一些低矮阴暗的地方进行探索&#xff0c;比如茶几下或者床底下&#xff0c;特别是在部分家庭中&#xff0c;如果没有及时对这些阴…...

C++算法 —— 动态规划(8)01背包问题

文章目录 1、动规思路简介2、模版题&#xff1a;01背包第一问第二问优化 3、分割等和子集4、目标和5、最后一块石头的重量Ⅱ 背包问题需要读者先明白动态规划是什么&#xff0c;理解动规的思路&#xff0c;并不能给刚接触动规的人学习。所以最好是看了之前的动规博客&#xff0…...

ASUS华硕天选4笔记本FA507NU7735H_4050原装出厂Win11系统

下载链接&#xff1a;https://pan.baidu.com/s/1puxQOxk4Rbno1DqxhkvzXQ?pwdhkzz 系统自带网卡、显卡、声卡等所有驱动、出厂主题壁纸、Office办公软件、MyASUS华硕电脑管家、奥创控制中心等预装程序...

金蝶OA server_file 目录遍历漏洞

漏洞描述 金蝶OA server_file 存在目录遍历漏洞&#xff0c;攻击者通过目录遍历可以获取服务器敏感信息 漏洞影响 金蝶OA 漏洞复现 访问漏洞url&#xff1a; 漏洞POC Windows服务器&#xff1a; appmonitor/protected/selector/server_file/files?folderC://&suffi…...

read_image错误

File is no BMP-File(Halcon 错误代码5560&#xff09;类似的错误一般都是图片内部封装的格式与外部扩展名不一致导致&#xff08;也就是扩展名并不是真实图片的格式扩展&#xff09;。 通过软件“UltraEdit”(http://www.onlinedown.net/soft/7752.htm)使用16进制查看&#x…...

网站测试的一般步骤包括/怎么投稿各大媒体网站

黑莓计划效仿微信的做法&#xff0c;将该公司旗下的BBM聊天应用打造成一款融合视频观看、明星关注和在线购物等功能的一站式平台。 由于手机销量持续下滑&#xff0c;黑莓希望提升软件和服务业务营收&#xff0c;因此与印度尼西亚顶尖媒体公司PT Elang Mahkota Teknologi Tbk。…...

腾讯公司做的购物网站/免费推广广告链接

05年毕业&#xff0c;到今年12年了&#xff0c;对一个人的工作经验来说&#xff0c;不长不短。一直想写个十年总结&#xff0c;但迟迟没有动笔&#xff0c;受某偶像刺激&#xff0c;好好整理一下日常的点滴&#xff0c;写下这篇狗尾续貂之作。愿我走过的弯路不会有人再走&#…...

网站备案信息安全承诺书/百度一下你就知道

一、 1、uboot U-Boot嵌入式Linux系统的引导 (1)uboot主要作用是用来启动操作系统内核。 (2)uboot还要负责部署整个计算机系统。 (3)uboot中还有操作Flash等板子上硬盘的驱动。 (4)uboot还得提供一个命令行界面供人来操作。 1、uboot从哪里来的&#xff1f; (1)uboot是Sour…...

东莞做网站企业铭/如何做网络销售平台

常见的 Web 项目转换问题及解决方案 发布日期&#xff1a; 2006-2-23| 更新日期&#xff1a; 2006-2-23Michael BundschuhProgram Manager, MicrosoftRobert McGovernInfusion Development 适用于&#xff1a;ASP.NET 1.xASP.NET 2.0Visual Studio .NET 2003Visual Studio 2005…...

wordpress comments_template()/专业关键词优化平台

在Linux环境中编译时&#xff0c;有时会用到make menuconfig或make config命令&#xff0c;这些命令通常会使用ncurses库&#xff0c;如果ncurses库没有安装设置正确&#xff0c;可能出现如下的错误信息&#xff1a;error opening terminal Linuxerror opening terminal xterme…...

国内专业网站设计/网络优化工程师工资

紫光展锐5G芯片已流片&#xff1a;7nm工艺 2019年问世https://news.mydrivers.com/1/612/612346.htm 本文转载自超能网&#xff0c;其他媒体转载需经超能网同意 高通骁龙X50 5G基带、华为巴龙5G01基带、联发科曦力 M70基带、三星猎户座5100基带、Intel XMM 8160基带 下个月的MW…...