卷积网络的发展历史-LeNet
简介
LeNet是CNN结构的开山鼻祖,第一次定义了卷积神经网络的结构。
LeNet模型包含了多个卷积层和池化层,以及最后的全连接层用于分类。其中,每个卷积层都包含了一个卷积操作和一个非线性激活函数,用于提取输入图像的特征。池化层则用于缩小特征图的尺寸,减少模型参数和计算量。全连接层则将特征向量映射到类别概率上。

特点
LeNet 的特点如下所示:
(1)定义了卷积神经网络(Convolutional Neural Network, CNN)的基本框架:卷积层+池化层(Pooling Layer)+全连接层;
(2)定义了卷积层(Convolution Layer),与全连接层相比,卷积层的不同之处有两点:局部连接(引进“感受野”这一概念)、权值共享(减少参数数量),卷积计算公式:
![]()
(3)利用池化层进行下采样(Downsampooling),从而减少计算量,池化计算公式:
![]()
(4)用tanh作为非线性激活函数(现在看到的都是改进过的LeNet了,用ReLu代替 tanh。相较于sigmoid,tanh以原点对称(zero-centered),收敛速度会快。
python实例
import tensorflow as tfdef lenet_model():inputs = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])conv1 = tf.layers.conv2d(inputs=inputs, filters=6, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation=tf.nn.relu)pool1 = tf.layers.max_pooling2d(conv1, (2, 2), strides=(2, 2))conv2 = tf.layers.conv2d(inputs=pool1, filters=16, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation=tf.nn.relu)pool2 = tf.layers.max_pooling2d(conv2, (2, 2), strides=(2, 2))flatten = tf.layers.flatten(pool2)dense1 = tf.layers.dense(flatten, 120, activation=tf.nn.relu)dense2 = tf.layers.dense(dense1, 84, activation=tf.nn.relu)logits = tf.layers.dense(dense2, 10)return inputs, logits
相关文章:
卷积网络的发展历史-LeNet
简介 LeNet是CNN结构的开山鼻祖,第一次定义了卷积神经网络的结构。 LeNet模型包含了多个卷积层和池化层,以及最后的全连接层用于分类。其中,每个卷积层都包含了一个卷积操作和一个非线性激活函数,用于提取输入图像的特征。池化层…...
(2023,GPT-4V,LLM,LMM,功能和应用)大型多模态模型的黎明:GPT-4V(ision) 的初步探索
The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision) 公众号:EDPJ(添加 VX:CV_EDPJ 或直接进 Q 交流群:922230617 获取资料) 目录 0. 摘要 1. 简介 1.1 动机和概述 1.2 我们探索 GPT-4V 的方法 1.3…...
【C++设计模式之装饰模式:结构型】分析及示例
装饰模式(Decorator Pattern)是一种结构型设计模式,它允许在运行时动态地给一个对象添加额外的行为。 描述 装饰模式通过创建一个包装器(Wrapper)来包裹原始对象,并在原始对象的行为前后添加额外的功能。…...
绘制散点图、曲线图、折线图和环形图失败, 设置迭代次数和进度无法保存图片
错误❌ 分别input设置(我想知道微积分的力量) 设1个人,他有每天3种方案,每天进步千分之一,千分之一,十万分之一等到他们迭代 200,500,1000,2000,3000,5000,9000次 他们在图片什么位置画曲线图࿰…...
micro-ROS中对消息的内存管理
文章目录 1.背景2.答案2.1.基本类型及其数组,不需要2.1.序列类型(复合类型、复合序列类型),需要 3.内存申请方法3.1.手动申请(Manual allocation)3.1.工具辅助(micro-ROS utilities)…...
Springboot中使用拦截器、过滤器、监听器
一、Servlet、Filter(过滤器)、 Listener(监听器)、Interceptor(拦截器) Javaweb三大组件:servlet、Filter(过滤器)、 Listener(监听器) Spring…...
代码随想录二刷day45
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、力扣70. 爬楼梯二、力扣322. 零钱兑换三、力扣279. 完全平方数 前言 一、力扣70. 爬楼梯 class Solution {public int climbStairs(int n) {int[] dp new…...
泊车功能专题介绍 ———— AVP系统基础数据交互内容
文章目录 系统架构系统功能描述云端子系统车辆子系统场端子系统用户APP 工作流程基础数据交互内容AVP 系统基础数据交互服务车/用户 - 云基础数据交互内容车位查询工作流程技术要求数据交互要求 车位预约工作流程技术要求数据交互要求 取消预约工作流程技术要求数据交互要求 泊…...
蓝桥杯每日一题2023.10.6
题目描述 门牌制作 - 蓝桥云课 (lanqiao.cn) 题目分析 #include<bits/stdc.h> using namespace std; int ans; int main() {for(int i 1; i < 2020; i ){int x i;while(x){int a x % 10;if(a 2)ans ;x / 10;}}cout << ans;return 0; } 题目描述 既约分数…...
7、【Qlib】【主要组件】Data Layer:数据框架与使用
7、【主要组件】Data Layer:数据框架与使用 简介数据准备Qlib 格式数据Qlib 格式数据集自动更新日频率数据将 CSV 格式转换为 Qlib 格式股票池(市场)多股票模式 数据API数据检索特征过滤器 数据加载器QlibDataLoaderStaticDataLoaderInterfac…...
Kubernetes安装部署 1
本文主要描述kubernetes的安装部署,kubernetes的安装部署主要包括三个关键组件,其中,包括kubeadm、kubelet、kubectl,这三个组件的功能描述如下所示: Kubeadm 用于启动与管理kubernetes集群 Kubelet 运行在所有集群的…...
在VS Code中优雅地编辑csv文件
文章目录 Rainbow csv转表格CSV to Tablecsv2tableCSV to Markdown Table Edit csv 下面这些插件对csv/tsv/psv都有着不错的支持,这几种格式的主要区别是分隔符不同。 功能入口/使用方法Rainbow csv按列赋色右键菜单CSV to Table转为ASCII表格指令CSV to Markdown …...
LCR 128.库存管理 I
题目来源: leetcode题目,网址:LCR 128. 库存管理 I - 力扣(LeetCode) 解题思路: 数组可以分割成两段的升序连续子数组,找到两个子数组的开始元素并返回较小者即可。 解题代码: …...
eigen::Affine3d 转换
平移eigen::vector3d和四元数Eigen::Quaterniond 转 eigen::Affine3d Eigen::Vector3d t Eigen::Vector3d::Zero(); Eigen::Quaterniond q Eigen::Quaterniond ::Identity();Eigen::Affine3d affine3d t * q.toRotationMatrix(); Eigen::Matrix4d 转 eigen::Affine3d Eige…...
【Python从入门到进阶】38、selenium关于Chrome handless的基本使用
接上篇《37、selenium关于phantomjs的基本使用》 上一篇我们介绍了有关phantomjs的相关知识,但由于selenium已经放弃PhantomJS,本篇我们来学习Chrome的无头版浏览器Chrome Handless的使用。 一、Chrome Headless简介 Chrome Headless是一个无界面的浏览…...
给Python项目创建一个虚拟环境(enev)
给Python项目创建一个虚拟环境(enev) 为您的Python项目创建一个虚拟环境是一种良好的实践,可以隔离项目的依赖项,以确保它们不会干扰全局Python环境或其他项目。您可以使用venv模块来创建虚拟环境。以下是在Linux上创建虚拟环境的…...
【RK3588】YOLO V5在瑞芯微板子上部署问题记录汇总
YOLO V5训练模型部署到瑞芯微的板子上面,官方是有给出案例和转过详情的。并且也提供了Python版本的推理代码,以及C语言的代码。 但是,对于转换过程中的细节,哪些需要改?怎么改?如何改,和为什么…...
别人做的百度百科词条信息不全,如何更正自己的百度百科词条
很多人自己的百度百科词条是别人上传上去的,自己压根不知道,而且里面的信息内容要么不全,要么是有错漏的,但自己想要更正自己的百度百科词条又不知道如何更正,下面洛希爱做百科网和大家介绍一些百科经验知识。 首先百…...
[论文精读]U-Net: Convolutional Networks for BiomedicalImage Segmentation
论文原文:U-Net: Convolutional Networks for Biomedical Image Segmentation (arxiv.org) 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔…...
Godot Identifier “File“ not declared in the current scope.
解决方案: f FileAccess.open(savedir, FileAccess.READ)...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
