当前位置: 首页 > news >正文

Redisson—分布式集合详述

7.1. 映射(Map)

基于Redis的Redisson的分布式映射结构的RMap Java对象实现了java.util.concurrent.ConcurrentMap接口和java.util.Map接口。与HashMap不同的是,RMap保持了元素的插入顺序。该对象的最大容量受Redis限制,最大元素数量是4 294 967 295个。

除了同步接口外,还提供了异步(Async)、反射式(Reactive)和RxJava2标准的接口。如果你想用Redis Map来保存你的POJO的话,可以考虑使用分布式实时对象(Live Object)服务。

在特定的场景下,映射缓存(Map)上的高度频繁的读取操作,使网络通信都被视为瓶颈时,可以使用Redisson提供的带有本地缓存功能的映射。

RMap<String, SomeObject> map = redisson.getMap("anyMap");
SomeObject prevObject = map.put("123", new SomeObject());
SomeObject currentObject = map.putIfAbsent("323", new SomeObject());
SomeObject obj = map.remove("123");map.fastPut("321", new SomeObject());
map.fastRemove("321");RFuture<SomeObject> putAsyncFuture = map.putAsync("321");
RFuture<Void> fastPutAsyncFuture = map.fastPutAsync("321");map.fastPutAsync("321", new SomeObject());
map.fastRemoveAsync("321");

映射的字段锁的用法:

RMap<MyKey, MyValue> map = redisson.getMap("anyMap");
MyKey k = new MyKey();
RLock keyLock = map.getLock(k);
keyLock.lock();
try {MyValue v = map.get(k);// 其他业务逻辑
} finally {keyLock.unlock();
}RReadWriteLock rwLock = map.getReadWriteLock(k);
rwLock.readLock().lock();
try {MyValue v = map.get(k);// 其他业务逻辑
} finally {keyLock.readLock().unlock();
}

7.1.1. 映射(Map)的元素淘汰(Eviction),本地缓存(LocalCache)和数据分片(Sharding)

Redisson提供了一系列的映射类型的数据结构,这些结构按特性主要分为三大类:

  • 元素淘汰(Eviction) 类 -- 带有元素淘汰(Eviction)机制的映射类允许针对一个映射中每个元素单独设定 有效时间最长闲置时间
  • 本地缓存(LocalCache) 类 -- 本地缓存(Local Cache)也叫就近缓存(Near Cache)。这类映射的使用主要用于在特定的场景下,映射缓存(MapCache)上的高度频繁的读取操作,使网络通信都被视为瓶颈的情况。Redisson与Redis通信的同时,还将部分数据保存在本地内存里。这样的设计的好处是它能将读取速度提高最多 45倍 。 所有同名的本地缓存共用一个订阅发布话题,所有更新和过期消息都将通过该话题共享。
  • 数据分片(Sharding) 类 -- 数据分片(Sharding)类仅适用于Redis集群环境下,因此带有数据分片(Sharding)功能的映射也叫集群分布式映射。它利用分库的原理,将单一一个映射结构切分为若干个小的映射,并均匀的分布在集群中的各个槽里。这样的设计能使一个单一映射结构突破Redis自身的容量限制,让其容量随集群的扩大而增长。在扩容的同时,还能够使读写性能和元素淘汰处理能力随之成线性增长。

以下列表是Redisson提供的所有映射的名称及其特性:

接口名称
中文名称

RedissonClient
对应的构造方法

本地缓存功能
Local Cache

数据分片功能
Sharding

元素淘汰功能
Eviction

RMap
映射

getMap()

No

No

No

RMapCache
映射缓存

getMapCache()

No

No

Yes

RLocalCachedMap
本地缓存映射

getLocalCachedMap()

Yes

No

No

RLocalCachedMap
Cache
本地缓存映射缓存
仅限于Redisson PRO版本

getLocalCachedMapCache()

Yes

No

Yes

RClusteredMap
集群分布式映射存
仅限于Redisson PRO版本

getClusteredMap()

No

Yes

No

RClusteredMapCache
集群分布式映射缓存存
仅限于Redisson PRO版本

getClusteredMapCache()

No

Yes

Yes

RClusteredLocal
CachedMap
集群分布式本地缓存映射存
仅限于Redisson PRO版本

getClusteredLocal
CachedMap()

Yes

Yes

No

RClusteredLocal
CachedMapCache
集群分布式本地缓存映射缓存存
仅限于Redisson PRO版本

getClusteredLocal
CachedMapCache()

Yes

Yes

Yes

除此以外,Redisson还提供了Spring Cache和JCache的实现。

元素淘汰功能(Eviction)

Redisson的分布式的RMapCache Java对象在基于RMap的前提下实现了针对单个元素的淘汰机制。同时仍然保留了元素的插入顺序。由于RMapCache是基于RMap实现的,使它同时继承了java.util.concurrent.ConcurrentMap接口和java.util.Map接口。Redisson提供的Spring Cache整合以及JCache正是基于这样的功能来实现的。

目前的Redis自身并不支持散列(Hash)当中的元素淘汰,因此所有过期元素都是通过org.redisson.EvictionScheduler实例来实现定期清理的。为了保证资源的有效利用,每次运行最多清理300个过期元素。任务的启动时间将根据上次实际清理数量自动调整,间隔时间趋于1秒到1小时之间。比如该次清理时删除了300条元素,那么下次执行清理的时间将在1秒以后(最小间隔时间)。一旦该次清理数量少于上次清理数量,时间间隔将增加1.5倍。

RMapCache<String, SomeObject> map = redisson.getMapCache("anyMap");
// 有效时间 ttl = 10分钟
map.put("key1", new SomeObject(), 10, TimeUnit.MINUTES);
// 有效时间 ttl = 10分钟, 最长闲置时间 maxIdleTime = 10秒钟
map.put("key1", new SomeObject(), 10, TimeUnit.MINUTES, 10, TimeUnit.SECONDS);// 有效时间 = 3 秒钟
map.putIfAbsent("key2", new SomeObject(), 3, TimeUnit.SECONDS);
// 有效时间 ttl = 40秒钟, 最长闲置时间 maxIdleTime = 10秒钟
map.putIfAbsent("key2", new SomeObject(), 40, TimeUnit.SECONDS, 10, TimeUnit.SECONDS);

本地缓存功能(Local Cache)

在特定的场景下,映射(Map)上的高度频繁的读取操作,使网络通信都被视为瓶颈时,使用Redisson提供的带有本地缓存功能的分布式本地缓存映射RLocalCachedMapJava对象会是一个很好的选择。它同时实现了java.util.concurrent.ConcurrentMap和java.util.Map两个接口。本地缓存功能充分的利用了JVM的自身内存空间,对部分常用的元素实行就地缓存,这样的设计让读取操作的性能较分布式映射相比提高最多 45倍 。以下配置参数可以用来创建这个实例:

LocalCachedMapOptions options = LocalCachedMapOptions.defaults()// 用于淘汰清除本地缓存内的元素// 共有以下几种选择:// LFU - 统计元素的使用频率,淘汰用得最少(最不常用)的。// LRU - 按元素使用时间排序比较,淘汰最早(最久远)的。// SOFT - 元素用Java的WeakReference来保存,缓存元素通过GC过程清除。// WEAK - 元素用Java的SoftReference来保存, 缓存元素通过GC过程清除。// NONE - 永不淘汰清除缓存元素。.evictionPolicy(EvictionPolicy.NONE)// 如果缓存容量值为0表示不限制本地缓存容量大小.cacheSize(1000)// 以下选项适用于断线原因造成了未收到本地缓存更新消息的情况。// 断线重连的策略有以下几种:// CLEAR - 如果断线一段时间以后则在重新建立连接以后清空本地缓存// LOAD - 在服务端保存一份10分钟的作废日志//        如果10分钟内重新建立连接,则按照作废日志内的记录清空本地缓存的元素//        如果断线时间超过了这个时间,则将清空本地缓存中所有的内容// NONE - 默认值。断线重连时不做处理。.reconnectionStrategy(ReconnectionStrategy.NONE)// 以下选项适用于不同本地缓存之间相互保持同步的情况// 缓存同步策略有以下几种:// INVALIDATE - 默认值。当本地缓存映射的某条元素发生变动时,同时驱逐所有相同本地缓存映射内的该元素// UPDATE - 当本地缓存映射的某条元素发生变动时,同时更新所有相同本地缓存映射内的该元素// NONE - 不做任何同步处理.syncStrategy(SyncStrategy.INVALIDATE)// 每个Map本地缓存里元素的有效时间,默认毫秒为单位.timeToLive(10000)// 或者.timeToLive(10, TimeUnit.SECONDS)// 每个Map本地缓存里元素的最长闲置时间,默认毫秒为单位.maxIdle(10000)// 或者.maxIdle(10, TimeUnit.SECONDS);
RLocalCachedMap<String, Integer> map = redisson.getLocalCachedMap("test", options);String prevObject = map.put("123", 1);
String currentObject = map.putIfAbsent("323", 2);
String obj = map.remove("123");// 在不需要旧值的情况下可以使用fast为前缀的类似方法
map.fastPut("a", 1);
map.fastPutIfAbsent("d", 32);
map.fastRemove("b");RFuture<String> putAsyncFuture = map.putAsync("321");
RFuture<Void> fastPutAsyncFuture = map.fastPutAsync("321");map.fastPutAsync("321", new SomeObject());
map.fastRemoveAsync("321");

当不再使用Map本地缓存对象的时候应该手动销毁,如果Redisson对象被关闭(shutdown)了,则不用手动销毁。

RLocalCachedMap<String, Integer> map = ...
map.destroy();

如何通过加载数据的方式来降低过期淘汰事件发布信息对网络的影响

代码范例:

public void loadData(String cacheName, Map<String, String> data) {RLocalCachedMap<String, String> clearMap = redisson.getLocalCachedMap(cacheName, LocalCachedMapOptions.defaults().cacheSize(1).syncStrategy(SyncStrategy.INVALIDATE));RLocalCachedMap<String, String> loadMap = redisson.getLocalCachedMap(cacheName, LocalCachedMapOptions.defaults().cacheSize(1).syncStrategy(SyncStrategy.NONE));loadMap.putAll(data);clearMap.clearLocalCache();
}

数据分片功能(Sharding)

Map数据分片是Redis集群模式下的一个功能。Redisson提供的分布式集群映射RClusteredMap Java对象也是基于RMap实现的。它同时实现了java.util.concurrent.ConcurrentMap和java.util.Map两个接口。在这里可以获取更多的内部信息。

RClusteredMap<String, SomeObject> map = redisson.getClusteredMap("anyMap");SomeObject prevObject = map.put("123", new SomeObject());
SomeObject currentObject = map.putIfAbsent("323", new SomeObject());
SomeObject obj = map.remove("123");map.fastPut("321", new SomeObject());
map.fastRemove("321");

7.1.2. 映射持久化方式(缓存策略)

Redisson供了将映射中的数据持久化到外部储存服务的功能。主要场景有一下几种:

  1. 将Redisson的分布式映射类型作为业务和外部储存媒介之间的缓存。
  2. 或是用来增加Redisson映射类型中数据的持久性,或是用来增加已被驱逐的数据的寿命。
  3. 或是用来缓存数据库,Web服务或其他数据源的数据。

Read-through策略

通俗的讲,如果一个被请求的数据不存在于Redisson的映射中的时候,Redisson将通过预先配置好的MapLoader对象加载数据。

Write-through(数据同步写入)策略

在遇到映射中某条数据被更改时,Redisson会首先通过预先配置好的MapWriter对象写入到外部储存系统,然后再更新Redis内的数据。

Write-behind(数据异步写入)策略

对映射的数据的更改会首先写入到Redis,然后再使用异步的方式,通过MapWriter对象写入到外部储存系统。在并发环境下可以通过writeBehindThreads参数来控制写入线程的数量,已达到对外部储存系统写入并发量的控制。

以上策略适用于所有实现了RMap、RMapCache、RLocalCachedMap和RLocalCachedMapCache接口的对象。

配置范例:

MapOptions<K, V> options = MapOptions.<K, V>defaults().writer(myWriter).loader(myLoader);RMap<K, V> map = redisson.getMap("test", options);
// 或
RMapCache<K, V> map = redisson.getMapCache("test", options);
// 或
RLocalCachedMap<K, V> map = redisson.getLocalCachedMap("test", options);
// 或
RLocalCachedMapCache<K, V> map = redisson.getLocalCachedMapCache("test", options);

7.1.3. 映射监听器(Map Listener)

Redisson为所有实现了RMapCache或RLocalCachedMapCache接口的对象提供了监听以下事件的监听器:

事件 | 监听器 元素 添加 事件 | org.redisson.api.map.event.EntryCreatedListener
元素 过期 事件 | org.redisson.api.map.event.EntryExpiredListener
元素 删除 事件 | org.redisson.api.map.event.EntryRemovedListener
元素 更新 事件 | org.redisson.api.map.event.EntryUpdatedListener

使用范例:

RMapCache<String, Integer> map = redisson.getMapCache("myMap");
// 或
RLocalCachedMapCache<String, Integer> map = redisson.getLocalCachedMapCache("myMap", options);int updateListener = map.addListener(new EntryUpdatedListener<Integer, Integer>() {@Overridepublic void onUpdated(EntryEvent<Integer, Integer> event) {event.getKey(); // 字段名event.getValue() // 新值event.getOldValue() // 旧值// ...}
});int createListener = map.addListener(new EntryCreatedListener<Integer, Integer>() {@Overridepublic void onCreated(EntryEvent<Integer, Integer> event) {event.getKey(); // 字段名event.getValue() // 值// ...}
});int expireListener = map.addListener(new EntryExpiredListener<Integer, Integer>() {@Overridepublic void onExpired(EntryEvent<Integer, Integer> event) {event.getKey(); // 字段名event.getValue() // 值// ...}
});int removeListener = map.addListener(new EntryRemovedListener<Integer, Integer>() {@Overridepublic void onRemoved(EntryEvent<Integer, Integer> event) {event.getKey(); // 字段名event.getValue() // 值// ...}
});map.removeListener(updateListener);
map.removeListener(createListener);
map.removeListener(expireListener);
map.removeListener(removeListener);

7.1.4. LRU有界映射

Redisson提供了基于Redis的以LRU为驱逐策略的分布式LRU有界映射对象。顾名思义,分布式LRU有界映射允许通过对其中元素按使用时间排序处理的方式,主动移除超过规定容量限制的元素。

RMapCache<String, String> map = redisson.getMapCache("map");
// 尝试将该映射的最大容量限制设定为10
map.trySetMaxSize(10);// 将该映射的最大容量限制设定或更改为10
map.setMaxSize(10);map.put("1", "2");
map.put("3", "3", 1, TimeUnit.SECONDS);

7.2. 多值映射(Multimap)

基于Redis的Redisson的分布式RMultimap Java对象允许Map中的一个字段值包含多个元素。 字段总数受Redis限制,每个Multimap最多允许有4 294 967 295个不同字段。

7.2.1. 基于集(Set)的多值映射(Multimap)

基于Set的Multimap不允许一个字段值包含有重复的元素。

RSetMultimap<SimpleKey, SimpleValue> map = redisson.getSetMultimap("myMultimap");
map.put(new SimpleKey("0"), new SimpleValue("1"));
map.put(new SimpleKey("0"), new SimpleValue("2"));
map.put(new SimpleKey("3"), new SimpleValue("4"));Set<SimpleValue> allValues = map.get(new SimpleKey("0"));List<SimpleValue> newValues = Arrays.asList(new SimpleValue("7"), new SimpleValue("6"), new SimpleValue("5"));
Set<SimpleValue> oldValues = map.replaceValues(new SimpleKey("0"), newValues);Set<SimpleValue> removedValues = map.removeAll(new SimpleKey("0"));

7.2.2. 基于列表(List)的多值映射(Multimap)

基于List的Multimap在保持插入顺序的同时允许一个字段下包含重复的元素。

RListMultimap<SimpleKey, SimpleValue> map = redisson.getListMultimap("test1");
map.put(new SimpleKey("0"), new SimpleValue("1"));
map.put(new SimpleKey("0"), new SimpleValue("2"));
map.put(new SimpleKey("0"), new SimpleValue("1"));
map.put(new SimpleKey("3"), new SimpleValue("4"));List<SimpleValue> allValues = map.get(new SimpleKey("0"));Collection<SimpleValue> newValues = Arrays.asList(new SimpleValue("7"), new SimpleValue("6"), new SimpleValue("5"));
List<SimpleValue> oldValues = map.replaceValues(new SimpleKey("0"), newValues);List<SimpleValue> removedValues = map.removeAll(new SimpleKey("0"));

7.2.3. 多值映射(Multimap)淘汰机制(Eviction)

Multimap对象的淘汰机制是通过不同的接口来实现的。它们是RSetMultimapCache接口和RListMultimapCache接口,分别对应的是Set和List的Multimaps。

所有过期元素都是通过org.redisson.EvictionScheduler实例来实现定期清理的。为了保证资源的有效利用,每次运行最多清理100个过期元素。任务的启动时间将根据上次实际清理数量自动调整,间隔时间趋于1秒到2小时之间。比如该次清理时删除了100条元素,那么下次执行清理的时间将在1秒以后(最小间隔时间)。一旦该次清理数量少于上次清理数量,时间间隔将增加1.5倍。

RSetMultimapCache的使用范例:

RSetMultimapCache<String, String> multimap = redisson.getSetMultimapCache("myMultimap");
multimap.put("1", "a");
multimap.put("1", "b");
multimap.put("1", "c");multimap.put("2", "e");
multimap.put("2", "f");multimap.expireKey("2", 10, TimeUnit.MINUTES);

7.3. 集(Set)

基于Redis的Redisson的分布式Set结构的RSet Java对象实现了java.util.Set接口。通过元素的相互状态比较保证了每个元素的唯一性。该对象的最大容量受Redis限制,最大元素数量是4 294 967 295个。

RSet<SomeObject> set = redisson.getSet("anySet");
set.add(new SomeObject());
set.remove(new SomeObject());

Redisson PRO版本中的Set对象还可以在Redis集群环境下支持单集合数据分片。

7.3.1. 集(Set)淘汰机制(Eviction)

基于Redis的Redisson的分布式RSetCache Java对象在基于RSet的前提下实现了针对单个元素的淘汰机制。由于RSetCache是基于RSet实现的,使它还集成了java.util.Set接口。

目前的Redis自身并不支持Set当中的元素淘汰,因此所有过期元素都是通过org.redisson.EvictionScheduler实例来实现定期清理的。为了保证资源的有效利用,每次运行最多清理100个过期元素。任务的启动时间将根据上次实际清理数量自动调整,间隔时间趋于1秒到2小时之间。比如该次清理时删除了100条元素,那么下次执行清理的时间将在1秒以后(最小间隔时间)。一旦该次清理数量少于上次清理数量,时间间隔将增加1.5倍。

RSetCache<SomeObject> set = redisson.getSetCache("anySet");
// ttl = 10 seconds
set.add(new SomeObject(), 10, TimeUnit.SECONDS);

7.3.2. 集(Set)数据分片(Sharding)

Set数据分片是Redis集群模式下的一个功能。Redisson提供的分布式RClusteredSet Java对象也是基于RSet实现的。在这里可以获取更多的信息。

RClusteredSet<SomeObject> set = redisson.getClusteredSet("anySet");
set.add(new SomeObject());
set.remove(new SomeObject());

除了RClusteredSet以外,Redisson还提供了另一种集群模式下的分布式集(Set),它不仅提供了透明的数据分片功能,还为每个元素提供了淘汰机制。RClusteredSetCache 类分别同时提供了RClusteredSet 和RSetCache 这两个接口的实现。当然这些都是基于java.util.Set的接口实现上的。

该功能仅限于Redisson PRO版本。

7.4. 有序集(SortedSet)

基于Redis的Redisson的分布式RSortedSet Java对象实现了java.util.SortedSet接口。在保证元素唯一性的前提下,通过比较器(Comparator)接口实现了对元素的排序。

RSortedSet<Integer> set = redisson.getSortedSet("anySet");
set.trySetComparator(new MyComparator()); // 配置元素比较器
set.add(3);
set.add(1);
set.add(2);set.removeAsync(0);
set.addAsync(5);

7.5. 计分排序集(ScoredSortedSet)

基于Redis的Redisson的分布式RScoredSortedSet Java对象是一个可以按插入时指定的元素评分排序的集合。它同时还保证了元素的唯一性。

RScoredSortedSet<SomeObject> set = redisson.getScoredSortedSet("simple");set.add(0.13, new SomeObject(a, b));
set.addAsync(0.251, new SomeObject(c, d));
set.add(0.302, new SomeObject(g, d));set.pollFirst();
set.pollLast();int index = set.rank(new SomeObject(g, d)); // 获取元素在集合中的位置
Double score = set.getScore(new SomeObject(g, d)); // 获取元素的评分

7.6. 字典排序集(LexSortedSet)

基于Redis的Redisson的分布式RLexSortedSet Java对象在实现了java.util.Set<String>接口的同时,将其中的所有字符串元素按照字典顺序排列。它公式还保证了字符串元素的唯一性。

RLexSortedSet set = redisson.getLexSortedSet("simple");
set.add("d");
set.addAsync("e");
set.add("f");set.lexRangeTail("d", false);
set.lexCountHead("e");
set.lexRange("d", true, "z", false);

7.7. 列表(List)

基于Redis的Redisson分布式列表(List)结构的RList Java对象在实现了java.util.List接口的同时,确保了元素插入时的顺序。该对象的最大容量受Redis限制,最大元素数量是4 294 967 295个。

RList<SomeObject> list = redisson.getList("anyList");
list.add(new SomeObject());
list.get(0);
list.remove(new SomeObject());

7.8. 队列(Queue)

基于Redis的Redisson分布式无界队列(Queue)结构的RQueue Java对象实现了java.util.Queue接口。尽管RQueue对象无初始大小(边界)限制,但对象的最大容量受Redis限制,最大元素数量是4 294 967 295个。

RQueue<SomeObject> queue = redisson.getQueue("anyQueue");
queue.add(new SomeObject());
SomeObject obj = queue.peek();
SomeObject someObj = queue.poll();

7.9. 双端队列(Deque)

基于Redis的Redisson分布式无界双端队列(Deque)结构的RDeque Java对象实现了java.util.Deque接口。尽管RDeque对象无初始大小(边界)限制,但对象的最大容量受Redis限制,最大元素数量是4 294 967 295个。

RDeque<SomeObject> queue = redisson.getDeque("anyDeque");
queue.addFirst(new SomeObject());
queue.addLast(new SomeObject());
SomeObject obj = queue.removeFirst();
SomeObject someObj = queue.removeLast();

7.10. 阻塞队列(Blocking Queue)

基于Redis的Redisson分布式无界阻塞队列(Blocking Queue)结构的RBlockingQueue Java对象实现了java.util.concurrent.BlockingQueue接口。尽管RBlockingQueue对象无初始大小(边界)限制,但对象的最大容量受Redis限制,最大元素数量是4 294 967 295个。

RBlockingQueue<SomeObject> queue = redisson.getBlockingQueue("anyQueue");
queue.offer(new SomeObject());SomeObject obj = queue.peek();
SomeObject someObj = queue.poll();
SomeObject ob = queue.poll(10, TimeUnit.MINUTES);

poll, pollFromAny, pollLastAndOfferFirstTo和take方法内部采用话题订阅发布实现,在Redis节点故障转移(主从切换)或断线重连以后,内置的相关话题监听器将自动完成话题的重新订阅。

7.11. 有界阻塞队列(Bounded Blocking Queue)

基于Redis的Redisson分布式有界阻塞队列(Bounded Blocking Queue)结构的RBoundedBlockingQueue Java对象实现了java.util.concurrent.BlockingQueue接口。该对象的最大容量受Redis限制,最大元素数量是4 294 967 295个。队列的初始容量(边界)必须在使用前设定好。

RBoundedBlockingQueue<SomeObject> queue = redisson.getBoundedBlockingQueue("anyQueue");
// 如果初始容量(边界)设定成功则返回`真(true)`,
// 如果初始容量(边界)已近存在则返回`假(false)`。
queue.trySetCapacity(2);queue.offer(new SomeObject(1));
queue.offer(new SomeObject(2));
// 此时容量已满,下面代码将会被阻塞,直到有空闲为止。
queue.put(new SomeObject());SomeObject obj = queue.peek();
SomeObject someObj = queue.poll();
SomeObject ob = queue.poll(10, TimeUnit.MINUTES);

poll, pollFromAny, pollLastAndOfferFirstTo和take方法内部采用话题订阅发布实现,在Redis节点故障转移(主从切换)或断线重连以后,内置的相关话题监听器将自动完成话题的重新订阅。

7.12. 阻塞双端队列(Blocking Deque)

基于Redis的Redisson分布式无界阻塞双端队列(Blocking Deque)结构的RBlockingDeque Java对象实现了java.util.concurrent.BlockingDeque接口。尽管RBlockingDeque对象无初始大小(边界)限制,但对象的最大容量受Redis限制,最大元素数量是4 294 967 295个。

RBlockingDeque<Integer> deque = redisson.getBlockingDeque("anyDeque");
deque.putFirst(1);
deque.putLast(2);
Integer firstValue = queue.takeFirst();
Integer lastValue = queue.takeLast();
Integer firstValue = queue.pollFirst(10, TimeUnit.MINUTES);
Integer lastValue = queue.pollLast(3, TimeUnit.MINUTES);

poll, pollFromAny, pollLastAndOfferFirstTo和take方法内部采用话题订阅发布实现,在Redis节点故障转移(主从切换)或断线重连以后,内置的相关话题监听器将自动完成话题的重新订阅。

7.13. 阻塞公平队列(Blocking Fair Queue)

基于Redis的Redisson分布式无界阻塞公平队列(Blocking Fair Queue)结构的RBlockingFairQueue Java对象在实现Redisson分布式无界阻塞队列(Blocking Queue)结构RBlockingQueue接口的基础上,解决了多个队列消息的处理者在复杂的网络环境下,网络延时的影响使“较远”的客户端最终收到消息数量低于“较近”的客户端的问题。从而解决了这种现象引发的个别处理节点过载的情况。

以分布式无界阻塞队列为基础,采用公平获取消息的机制,不仅保证了poll、pollFromAny、pollLastAndOfferFirstTo和take方法获取消息的先入顺序,还能让队列里的消息被均匀的发布到处在复杂分布式环境中的各个处理节点里。

RBlockingFairQueue queue = redisson.getBlockingFairQueue("myQueue");
queue.offer(new SomeObject());SomeObject obj = queue.peek();
SomeObject someObj = queue.poll();
SomeObject ob = queue.poll(10, TimeUnit.MINUTES);

该功能仅限于Redisson PRO版本。

7.14. 阻塞公平双端队列(Blocking Fair Deque)

基于Redis的Redisson分布式无界阻塞公平双端队列(Blocking Fair Deque)结构的RBlockingFairDeque Java对象在实现Redisson分布式无界阻塞双端队列(Blocking Deque)结构RBlockingDeque接口的基础上,解决了多个队列消息的处理者在复杂的网络环境下,网络延时的影响使“较远”的客户端最终收到消息数量低于“较近”的客户端的问题。从而解决了这种现象引发的个别处理节点过载的情况。

以分布式无界阻塞双端队列为基础,采用公平获取消息的机制,不仅保证了poll、take、pollFirst、takeFirst、pollLast和takeLast方法获取消息的先入顺序,还能让队列里的消息被均匀的发布到处在复杂分布式环境中的各个处理节点里。

RBlockingFairDeque deque = redisson.getBlockingFairDeque("myDeque");
deque.offer(new SomeObject());SomeObject firstElement = queue.peekFirst();
SomeObject firstElement = queue.pollFirst();
SomeObject firstElement = queue.pollFirst(10, TimeUnit.MINUTES);
SomeObject firstElement = queue.takeFirst();SomeObject lastElement = queue.peekLast();
SomeObject lastElement = queue.pollLast();
SomeObject lastElement = queue.pollLast(10, TimeUnit.MINUTES);
SomeObject lastElement = queue.takeLast();

该功能仅限于Redisson PRO版本。

7.15. 延迟队列(Delayed Queue)

基于Redis的Redisson分布式延迟队列(Delayed Queue)结构的RDelayedQueue Java对象在实现了RQueue接口的基础上提供了向队列按要求延迟添加项目的功能。该功能可以用来实现消息传送延迟按几何增长或几何衰减的发送策略。

RQueue<String> distinationQueue = ...
RDelayedQueue<String> delayedQueue = getDelayedQueue(distinationQueue);
// 10秒钟以后将消息发送到指定队列
delayedQueue.offer("msg1", 10, TimeUnit.SECONDS);
// 一分钟以后将消息发送到指定队列
delayedQueue.offer("msg2", 1, TimeUnit.MINUTES);

在该对象不再需要的情况下,应该主动销毁。仅在相关的Redisson对象也需要关闭的时候可以不用主动销毁。

RDelayedQueue<String> delayedQueue = ...
delayedQueue.destroy();

7.16. 优先队列(Priority Queue)

基于Redis的Redisson分布式优先队列(Priority Queue)Java对象实现了java.util.Queue的接口。可以通过比较器(Comparator)接口来对元素排序。

RPriorityQueue<Integer> queue = redisson.getPriorityQueue("anyQueue");
queue.trySetComparator(new MyComparator()); // 指定对象比较器
queue.add(3);
queue.add(1);
queue.add(2);queue.removeAsync(0);
queue.addAsync(5);queue.poll();

7.17. 优先双端队列(Priority Deque)

基于Redis的Redisson分布式优先双端队列(Priority Deque)Java对象实现了java.util.Deque的接口。可以通过比较器(Comparator)接口来对元素排序。

RPriorityDeque<Integer> queue = redisson.getPriorityDeque("anyQueue");
queue.trySetComparator(new MyComparator()); // 指定对象比较器
queue.addLast(3);
queue.addFirst(1);
queue.add(2);queue.removeAsync(0);
queue.addAsync(5);queue.pollFirst();
queue.pollLast();

7.18. 优先阻塞队列(Priority Blocking Queue)

基于Redis的分布式无界优先阻塞队列(Priority Blocking Queue)Java对象的结构与java.util.concurrent.PriorityBlockingQueue类似。可以通过比较器(Comparator)接口来对元素排序。PriorityBlockingQueue的最大容量是4 294 967 295个元素。

RPriorityBlockingQueue<Integer> queue = redisson.getPriorityBlockingQueue("anyQueue");
queue.trySetComparator(new MyComparator()); // 指定对象比较器
queue.add(3);
queue.add(1);
queue.add(2);queue.removeAsync(0);
queue.addAsync(5);queue.take();

当Redis服务端断线重连以后,或Redis服务端发生主从切换,并重新建立连接后,断线时正在使用poll,pollLastAndOfferFirstTo或take方法的对象Redisson将自动再次为其订阅相关的话题。

7.19. 优先阻塞双端队列(Priority Blocking Deque)

基于Redis的分布式无界优先阻塞双端队列(Priority Blocking Deque)Java对象实现了java.util.Deque的接口。addLast、 addFirst、push方法不能再这个对里使用。PriorityBlockingDeque的最大容量是4 294 967 295个元素。

RPriorityBlockingDeque<Integer> queue = redisson.getPriorityBlockingDeque("anyQueue");
queue.trySetComparator(new MyComparator()); // 指定对象比较器
queue.add(2);queue.removeAsync(0);
queue.addAsync(5);queue.pollFirst();
queue.pollLast();
queue.takeFirst();
queue.takeLast();

当Redis服务端断线重连以后,或Redis服务端发生主从切换,并重新建立连接后,断线时正在使用poll,pollLastAndOfferFirstTo或take方法的对象Redisson将自动再次为其订阅相关的话题。

相关文章:

Redisson—分布式集合详述

7.1. 映射&#xff08;Map&#xff09; 基于Redis的Redisson的分布式映射结构的RMap Java对象实现了java.util.concurrent.ConcurrentMap接口和java.util.Map接口。与HashMap不同的是&#xff0c;RMap保持了元素的插入顺序。该对象的最大容量受Redis限制&#xff0c;最大元素数…...

开发做前端好还是后端好?这是个问题!

前言 随着互联网的快速发展&#xff0c;越来越多的人选择从事Web开发行业&#xff0c;而Web开发涉及到前端和后端两个方面&#xff0c;相信许多人都曾经对这两个方面进行过探究。而且编程世界就像一座大城市&#xff0c;前端开发和后端开发就像城市的两个不同街区。作为初学者&…...

运行huggingface Kosmos2报错 nameerror: name ‘kosmos2tokenizer‘ is not defined

尝试运行huggingface上的Kosmos,https://huggingface.co/ydshieh/kosmos-2-patch14-224失败,报错: nameerror: name kosmos2tokenizer is not defined查看报错代码: vi /root/.cache/huggingface/modules/transformers_modules/ydshieh/kosmos-2-patch14-224/48e3edebaeb…...

吃鸡玩家必备神器!一站式提升战斗力、分享干货!

大家好&#xff0c;我是吃鸡玩家。在这个视频中&#xff0c;我要分享一个让你瞬间提高战斗力的神器&#xff0c;同时让你享受到顶级游戏作战干货的盛宴&#xff01;让我们一起来了解吧&#xff01; 首先&#xff0c;我们推荐绝地求生作图工具。通过这款工具&#xff0c;你可以轻…...

【maven】idea中基于maven-webapp骨架创建的web.xml问题

IDEA中基于maven-webapp骨架创建的web工程&#xff0c;默认的web.xml是这样的。 <!DOCTYPE web-app PUBLIC"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN""http://java.sun.com/dtd/web-app_2_3.dtd" ><web-app><display-name…...

【算法题】2034. 股票价格波动

插&#xff1a; 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 坚持不懈&#xff0c;越努力越幸运&#xff0c;大家一起学习鸭~~~ 题目&#xff1a; 给你一支股票价格的数据流。数据流…...

APSIM模型】作物模型应用案例

APSIM (Agricultural Production Systems sIMulator)模型是世界知名的作物生长模拟模型之一。APSIM模型有Classic和Next Generation两个系列模型&#xff0c;能模拟几十种农作物、牧草和树木的土壤-植物-大气过程&#xff0c;被广泛应用于精细农业、水肥管理、气候变化、粮食安…...

io_uring之liburing库安装

手动编译和安装 liburing&#xff1a; 1.首先&#xff0c;从 liburing 的 GitHub 仓库中获取源代码。您可以使用以下命令克隆仓库&#xff1a; git clone https://github.com/axboe/liburing.git2.进入 liburing 目录&#xff1a; cd liburing3.运行configure ./configure …...

Python WebSocket自动化测试:构建高效接口测试框架!

为了更高效地进行WebSocket接口的自动化测试&#xff0c;我们可以搭建一个专门的测试框架。本文将介绍如何使用Python构建一个高效的WebSocket接口测试框架&#xff0c;并重点关注以下四个方面的内容&#xff1a;运行测试文件封装、报告和日志的封装、数据驱动测试以及测试用例…...

MySQL数据库——SQL优化(1)-介绍、插入数据、主键优化

目录 介绍 插入数据 Insert 大批量插入数据 主键优化 数据组织方式 页分裂 页合并 索引设计原则 介绍 SQL优化将分为下面几个部分进行学习&#xff1a; 插入数据主键优化order by优化group by优化limit优化count优化update优化 首先就先来看第一方面&#xff0c; 插…...

Flink---10、处理函数(基本处理函数、按键分区处理函数、窗口处理函数、应用案例TopN、侧输出流)

星光下的赶路人star的个人主页 我的敌手就是我自己&#xff0c;我要他美好到能使我满意的程度 文章目录 1、处理函数1.1 基本处理函数&#xff08;ProcessFunction&#xff09;1.1.1 处理函数的功能和使用1.1.2 ProcessFunction解析1.1.3 处理函数的分类 1.2 按键分区处理函数&…...

多种方案教你彻底解决mac npm install -g后仍然不行怎么办sudo: xxx: command not found

问题概述 某些时候我们成功执行了npm install -g xxx&#xff0c;但是执行完成以后&#xff0c;使用我们全局新安装的包依然不行&#xff0c;如何解决呢&#xff1f; 解决方案1&#xff1a; step1: 查看npm 全局文件安装地址 XXXCN_CXXXMD6M ~ % npm list -g …...

斐波那契数列 JS

问题&#xff1a; 给出一个数字&#xff0c;找出它是斐波那契数列中的第几个数 斐波那契数列 [1, 1, 2, 3, 5, 8, 13, ...]&#xff0c;后一个数字是前两个数字之和 输入的数字大于等于 2 如果输入数字不存于斐波那契数列中&#xff0c;返回 -1 function demo(num) {//初始数据…...

IP 地址的分类

IP地址是用于标识计算机或设备在互联网上的位置的一种地址。IP地址通常根据其范围和用途分为不同的分类&#xff0c;主要包括以下几种&#xff1a; IPv4地址&#xff08;Internet Protocol version 4&#xff09;&#xff1a; IPv4地址是32位二进制数&#xff0c;通常以点分十…...

CDN网络基础入门:CDN原理及架构

背景 互联网业务的繁荣让各类门户网站、短视频、剧集观看、在线教育等内容生态快速发展&#xff0c;互联网流量呈现爆发式增长&#xff0c;自然也面临着海量内容分发效率上的挑战&#xff0c;那么作为终端用户&#xff0c;我们获取资源的体验是否有提升呢&#xff1f; 答案是…...

李沐深度学习记录2:10多层感知机

一.简要知识记录 x.numel()&#xff1a;看向量或矩阵里元素个数 A.sum()&#xff1a;向量或矩阵求和&#xff0c;axis参数可对某维度求和&#xff0c;keepdims参数设置是否保持维度不变 A.cumsum&#xff1a;axis参数设置沿某一维度计算矩阵累计和x*y:向量的按元素乘法 torch.…...

Python标准库中内置装饰器@staticmethod@classmethod

装饰器是Python中强大而灵活的功能&#xff0c;用于修改或增强函数或方法的行为。装饰器本质上是一个函数&#xff0c;它接受另一个函数作为参数&#xff0c;并返回一个新的函数&#xff0c;通常用于在不修改原始函数代码的情况下添加额外的功能或行为。这种技术称为元编程&…...

MySQL8 间隙锁在11种情况下的锁持有情况分析

测试环境及相关必要知识 测试环境为mysql 8 版本 间隙锁&#xff08;Gap Lock&#xff09;&#xff1a;用于锁定索引范围之间的间隙&#xff0c;防止其他事务在此间隙中插入新记录。间隙锁主要用于防止幻读问题。 在可重复读的隔离级别下默认打开该锁机制&#xff0c;解决幻…...

C# 图片按比例进行压缩

1、对图片进行压缩&#xff0c;保存在本地 对于一个200k的png文件按0.6的缩放比例进行压缩&#xff0c;压缩后的大小为20k左右 对于一个80k的jpg文件按0.6的缩放比例压缩&#xff0c;压缩后为13k左右 public void imageZoom(string name, Double zoomScale){Bitmap btImage …...

猜猜 JavaScript 输出:(! + [] + [] + ![]).length

一起猜 最近看到一个很有意思的题&#xff0c;直接来看&#xff0c;下面这段代码的打印结果是什么&#xff1f; console.log((! [] [] ![]).length) 猜猜看&#xff0c;你的答案是什么&#xff0c;打在评论区。 我的答案是 undefined&#xff0c;正如我的英文名 为什么呢&a…...

MTK Android12静默安装接口

该文档就是在android12系统上提供一个广播接收器&#xff0c;app端发送一个广播&#xff0c;并且带入apk的地址就可以实现安装 1、广播注册 frameworks\base\services\core\java\com\android\server\policy\PhoneWindowManager.java 首先要导入的依赖 import android.app.P…...

基于电容电流前馈与电网电压全前馈的三相LCL并网逆变器谐波抑制Simulink仿真

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

Python数据攻略-Pandas与统计数据分析

统计学在数据分析中到底有多重要?在数据分析的世界里,统计学扮演着一角色。想象一下你是《三国志》游戏的数据分析师,任务是找出哪个武将最受玩家欢迎,哪些战役最具挑战性等。 你怎么做呢?这就需要统计学的力量了。 文章目录 基础统计方法描述性统计方差和标准差相关性和…...

【gcc】RtpTransportControllerSend学习笔记 1

本文是大神 https://www.cnblogs.com/ishen 的文章的学习笔记。主要是大神文章: webrtc源码分析(8)-拥塞控制(上)-码率预估 的学习笔记。大神的webrtc源码分析(8)-拥塞控制(上)-码率预估 详尽而具体,堪称神作。因为直接看大神的文章,自己啥也没记住,所以同时跟着看代码。跟…...

若依分离版-前端使用

1 执行 npm install --registryhttps://registry.npm.taobao.org&#xff0c;报错信息如下 npm ERR! code ERESOLVE npm ERR! ERESOLVE unable to resolve dependency tree npm ERR! npm ERR! While resolving: ktg-mes-ui3.8.2 npm ERR! Found: vue2.6.12 npm ERR! node_modu…...

微信小程序-2

微信开发文档 https://developers.weixin.qq.com/miniprogram/dev/framework/ 一、app.js中的生命周期函数与globalData(全局变量) 指南 - - - 小程序框架 - - - 注册小程序 删除app.js里的东西&#xff0c;输入App回车&#xff0c;调用生命周期 选项 - - - 重新打开此项目…...

卷积神经网络的发展历史-ResNet

ResNet的产生 2015 年&#xff0c;Kaiming He 提出了ResNet&#xff08;拿到了 2016 年 CVPR Best Paper Award&#xff09;&#xff0c;不仅解决了神经网络中的退化问题还在同年的ILSVRC和COCO 竞赛横扫竞争对手&#xff0c;分别拿下分类、定位、检测、分割任务的第一名。 R…...

基于瞬时无功功率ip-iq的谐波信号检测Simulink仿真

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

node安装,nvm管理器

一、下载nvm&#xff0c;nvm-setup.exe https://github.com/coreybutler/nvm-windows/releases 二、配置NodeJS下载代理镜像&#xff08;可选&#xff09; 可以在NVM安装根目录下的setting.txt文件中&#xff0c;配置NodeJS下载代理镜像&#xff0c;解决在线安装NodeJS时速度…...

华为云云耀云服务器L实例评测|Ubuntu云锁防火墙安装搭建使用

华为云云耀云服务器L实例评测&#xff5c;Ubuntu安装云锁防火墙对抗服务器入侵和网络攻击 1.前言概述 华为云耀云服务器L实例是新一代开箱即用、面向中小企业和开发者打造的全新轻量应用云服务器。多种产品规格&#xff0c;满足您对成本、性能及技术创新的诉求。云耀云服务器L…...

建设银行官方网站买五粮液酒/品牌推广的目的和意义

效果预览 按下右侧的“点击预览”按钮可以在当前页面预览&#xff0c;点击链接可以全屏预览。 https://codepen.io/comehope/pen/PdaNXw 可交互视频 此视频是可以交互的&#xff0c;你可以随时暂停视频&#xff0c;编辑视频中的代码。 请用 chrome, safari, edge 打开观看。 ht…...

win2008做的网站打不开/品牌设计公司排名前十强

“开始”——“运行”——“msconfig”回车 在“服务”里面可以找到 至于删除服务项&#xff0c;可能 Windows 不允许吧&#xff0c;如果真的要彻底删除&#xff0c;就请打开注册表&#xff08;“开始”——“运行”——“regedit”&#xff09;然后依次打开HKEY_LOCAL_MACHI…...

盱眙有做网站开发的吗/如何建立自己的网站

forin的原理forin语句是JDK5版本的新特性&#xff0c;在此之前&#xff0c;遍历数组或集合的方法有两种&#xff1a;通过下标遍历和通过迭代器遍历。先举个例子&#xff1a;Testpublic void demo() {String arr[] { "abc", "def", "opq" };for …...

网站滚动的图片是怎么做的/长沙seo免费诊断

导语大家好&#xff0c;我是智能仓储物流技术研习社的社长&#xff0c;你的老朋友&#xff0c;老K。 本文来自高工产研研究。仅供参考。剑蓝错知识星球 * 原创电子书 * 深海社区 * 微信群 知名企业-智能仓储物流技术研习社-建立智能物流系统甲方、集成商与周边配套商共同技术语…...

做网站多久能排靠前/百度网盘网页版登录首页

使用图像编程这一章来了解一下我们可以使用图片来作些什么事情.一幅图胜过千言万语,在wxWidgets,工具条,树形控件,notebooks,按钮,Html窗口和特定的绘画代码中,都会用到图片.有时候它们还会在不可见的地方发挥作用,比如我们可以用它来创建双缓冲区以避免闪烁.这一章里,我们会接…...

网站推广的主要方法/seo网站seo

楼主工作的单位是一家欧洲公司&#xff0c;主营奢侈品的生产和销售&#xff0c;我们有一个PLM&#xff08;产品生命周期管理系统&#xff09;&#xff0c;用来管理产品的主数据&#xff0c;例如对部品及物料从设计到生产&#xff0c;以及BOM等主数据的管理&#xff0c;我们采购…...