当前位置: 首页 > news >正文

【算法训练-数组 三】【数组矩阵】螺旋矩阵、旋转图像、搜索二维矩阵

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是螺旋矩阵,使用【二维数组】这个基本的数据结构来实现
在这里插入图片描述

螺旋矩阵【EASY】

二维数组的结构特性入手

题干

在这里插入图片描述

解题思路

根据题目示例 matrix = [[1,2,3],[4,5,6],[7,8,9]] 的对应输出 [1,2,3,6,9,8,7,4,5] 可以发现,顺时针打印矩阵的顺序是 “从左向右、从上向下、从右向左、从下向上” 循环。
在这里插入图片描述

因此,考虑设定矩阵的 “左、上、右、下” 四个边界,模拟以上矩阵遍历顺序,算法流程:

  1. 空值处理: 当 matrix 为空时,直接返回空列表 [] 即可。
  2. 初始化: 矩阵 左、右、上、下 四个边界 l , r , t , b ,用于打印的结果列表 res 。
  3. 循环打印: “从左向右、从上向下、从右向左、从下向上” 四个方向循环打印。
    • 根据边界打印,即将元素按顺序添加至列表 res 尾部。
    • 边界向内收缩 1 (代表已被打印)。
    • ** 判断边界是否相遇**(是否打印完毕),若打印完毕代表下一个方向无需打印,则跳出。
  4. 返回值: 返回 res 即可

在这里插入图片描述
整体的打印过程
在这里插入图片描述

代码实现

基本数据结构数组
辅助数据结构
算法
技巧

import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可*** @param matrix int整型二维数组* @return int整型ArrayList*/public ArrayList<Integer> spiralOrder (int[][] matrix) {// 1 入参判断,如果为空数组,返回空集合if (matrix.length < 1) {return new ArrayList<Integer>();}// 2 定义四条边及返回值ArrayList<Integer> result = new ArrayList<Integer>();int left = 0;int right = matrix[0].length - 1;int top = 0;int bottom = matrix.length - 1;// 3 循环打印四条边while (true) {// 3-1 从左向右打印,明确左右边界,打印完后上边界向下移动,并判断是否有必要继续从上到下打印for (int i = left; i <= right; i++) {result.add(matrix[top][i]);}if (++top > bottom) {break;}// 3-2 从上向下打印,明确上下边界,打印完后右边界向左移动,并判断是否有必要继续从右到左打印for (int i = top; i <= bottom; i++) {result.add(matrix[i][right]);}if (left > --right) {break;}// 3-3 从右向左打印,明确左右边界,打印完后下边界向上移动,并判断是否有必要继续从下到上打印for (int i = right; i >= left; i--) {result.add(matrix[bottom][i]);}if (top > --bottom) {break;}// 3-4 从下向上打印,明确上下边界,打印完后左边界向右移动,并判断是否有必要继续从左到右打印for (int i = bottom; i >= top; i--) {result.add(matrix[i][left]);}if (++left > right) {break;}}return result;}
}

++top > bottom 等价于先给 top 自增 1 ,再判断++top > bottom 逻辑表达式

复杂度分析

  • 时间复杂度 O(MN) : M,N分别为矩阵行数和列数。
  • 空间复杂度 O(1) : 四个边界 l , r , t , b 使用常数大小的额外空间。

旋转图像

和螺旋矩阵类似,也是对一圈数值做处理

题干

在这里插入图片描述

解题思路

由原题知整体的旋转公式如下:
在这里插入图片描述
如果可以使用辅助矩阵则按如下方式修改即可:

class Solution {public void rotate(int[][] matrix) {int n = matrix.length;// 深拷贝 matrix -> tmpint[][] tmp = new int[n][];for (int i = 0; i < n; i++)tmp[i] = matrix[i].clone();// 根据元素旋转公式,遍历修改原矩阵 matrix 的各元素for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {matrix[j][n - 1 - i] = tmp[i][j];}}}
}

考虑不借助辅助矩阵,通过在原矩阵中直接「原地修改」,实现空间复杂度 **O(1)**的解法。以位于矩阵四个角点的元素为例,设矩阵左上角元素 A 、右上角元素 B 、右下角元素 C 、左下角元素 D 。矩阵旋转 90º 后,相当于依次先后执行 D→A,C→D, B→C, A→B 修改元素,即如下「首尾相接」的元素旋转操作:
在这里插入图片描述
如上图所示,由于第 1 步 D→A已经将 A覆盖(导致 A 丢失),此丢失导致最后第 4步 A→B无法赋值。为解决此问题,考虑借助一个「辅助变量 tmp」预先存储 A ,此时的旋转操作变为:
在这里插入图片描述
如上图所示,一轮可以完成矩阵 4 个元素的旋转。因而,只要分别以矩阵左上角 1/4的各元素为起始点执行以上旋转操作,
在这里插入图片描述

将这些元素旋转完成即完成了整个数组的旋转
在这里插入图片描述
具体来看,当矩阵大小n为偶数时,行列均取前n/2,当矩阵大小为奇数时,行取n/2,列取(n+1)/2,因为为奇数时,中间的元素不需要旋转

代码实现

基本数据结构数组
辅助数据结构
算法
技巧

class Solution {public void rotate(int[][] matrix) {// 1 获取数组长度,依据替换顺序位置matrix[i][j]->matrix[j][n-1-i]推导出ABCD位置int n = matrix.length;//int a=matrix[i][j];int b=matrix[j][n-1-i];int c=matrix[n-1-i][n-1-j];int d=matrix[n-1-j][i];// 2 遍历行列,行取n/2,列取(n+1)/2 为了应对奇数长度的nfor (int i = 0; i < n / 2; i++) {for (int j = 0; j < (n + 1) / 2; j++) {// 2-1 暂存A的位置,用来后续替换Bint temp = matrix[i][j];// 2-2 D替换Amatrix[i][j] = matrix[n - 1 - j][i];// 2-3 C替换Dmatrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];// 2-4 B替换Cmatrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];// 2-5 A替换Bmatrix[j][n - 1 - i] = temp;}}}
}

复杂度分析

时间复杂度 O(N*N): 其中 N 为输入矩阵的行(列)数。需要将矩阵中每个元素旋转到新的位置,即对矩阵所有元素操作一次,使用O(N*N)的时间
空间复杂度 O(1) : 临时变量 tmp使用常数大小的额外空间。值得注意,当循环中进入下轮迭代,上轮迭代初始化的 tmp占用的内存就会被自动释放,因此无累计使用空间。

搜索二维矩阵【MID】

从下题矩阵的特性入手进行查找
在这里插入图片描述

题干

在这里插入图片描述

解题思路

数组从左到右和从上到下都是升序的,如果从右上角出发开始遍历呢?会发现每次都是向左数字会变小,向下数字会变大,有点和二分查找树相似。二分查找树的话,是向左数字变小,向右数字变大。所以我们可以把 target 和当前值比较。

  • 如果 target 的值大于当前值,那么就向下走。
  • 如果 target 的值小于当前值,那么就向左走。
  • 如果相等的话,直接返回 true 。

也可以换个角度思考

  • 如果 target 的值大于当前值,也就意味着当前值所在的行肯定不会存在 target 了,可以把当前行去掉,从新的右上角的值开始遍历。
  • 如果 target 的值小于当前值,也就意味着当前值所在的列肯定不会存在 target 了,可以把当前列去掉,从新的右上角的值开始遍历。

看下边的例子

[1,   4,  7, 11, 15],
[2,   5,  8, 12, 19],
[3,   6,  9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]如果 target  = 9,如果我们从 15 开始遍历, cur = 15target < 15, 去掉当前列, cur = 11
[1,   4,  7, 11],
[2,   5,  8, 12],
[3,   6,  9, 16],
[10, 13, 14, 17],
[18, 21, 23, 26]    target < 11, 去掉当前列, cur = 7  
[1,   4,  7],
[2,   5,  8],
[3,   6,  9],
[10, 13, 14],
[18, 21, 23]     target > 7, 去掉当前行, cur = 8   
[2,   5,  8],
[3,   6,  9],
[10, 13, 14],
[18, 21, 23]       target > 8, 去掉当前行, cur = 9, 遍历结束    
[3,   6,  9],
[10, 13, 14],
[18, 21, 23]   

代码实现

基本数据结构数组
辅助数据结构
算法
技巧

import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可*** @param target int整型* @param array int整型二维数组* @return bool布尔型*/public boolean Find (int target, int[][] array) {// 1 入参判断if (array.length < 1) {return false;}// 2 定义行列边界,从右上角出发,所以初始化为右上角位置int right = array[0].length - 1;int top = 0;// 3 出发开始遍历,明确左右边界的范围while (right >= 0 && top <= array.length - 1) {int curValue = array[top][right];if (curValue > target) {// 3-1 如果当前值大于目标值,舍弃本列right--;} else if (curValue < target) {// 3-2 如果当前值小于目标值,舍弃本行top++;} else {// 3-3 如果当前值等于目标值,找到了目标值return true;}}return false;}
}

复杂度分析

  • 时间复杂度 O(M+N) : 只遍历了一遍
  • 空间复杂度 O(1) :没有使用额外空间。

拓展知识:二维数组

二维数组是一种常见的数据结构,它由多行和多列组成,可以用来存储和处理二维数据集合,例如矩阵、表格、图像、地图等。在不同的编程语言中,定义和使用二维数组的方式可能有所不同,以下是一些常见编程语言中的示例。

C/C++:

// 定义一个3x3的整数二维数组
int matrix[3][3] = {{1, 2, 3},{4, 5, 6},{7, 8, 9}
};// 访问元素
int element = matrix[1][2]; // 获取第二行第三列的元素,值为6

Python:

# 定义一个3x3的整数二维数组(使用嵌套列表)
matrix = [[1, 2, 3],[4, 5, 6],[7, 8, 9]
]# 访问元素
element = matrix[1][2] # 获取第二行第三列的元素,值为6

Java:

// 定义一个3x3的整数二维数组
int[][] matrix = {{1, 2, 3},{4, 5, 6},{7, 8, 9}
};// 访问元素
int element = matrix[1][2]; // 获取第二行第三列的元素,值为6

常用方法和操作:

  1. 访问元素: 使用索引来访问二维数组中的特定元素,例如 matrix[i][j],其中 i 表示行号,j 表示列号。

  2. 遍历二维数组: 使用嵌套循环来遍历二维数组,通常使用一个循环迭代行,另一个循环迭代列,以访问所有元素。

  3. 初始化: 在定义二维数组时,可以初始化数组的值。可以使用嵌套列表(Python)、嵌套数组(C/C++)或类似方式来初始化。

  4. 修改元素: 可以通过索引来修改特定元素的值,例如 matrix[i][j] = newValue

  5. 获取数组的行数和列数: 可以使用数组的长度或大小来获取行数和列数。

  6. 在算法中使用: 二维数组在解决各种问题时非常有用,例如矩阵运算图算法迷宫求解等。

  7. 释放内存(C/C++): 在使用动态分配内存创建二维数组时,需要谨慎释放内存以防止内存泄漏。

二维数组是一种非常灵活和强大的数据结构,可以在各种应用中发挥作用,从简单的数据存储到复杂的算法实现。

相关文章:

【算法训练-数组 三】【数组矩阵】螺旋矩阵、旋转图像、搜索二维矩阵

废话不多说&#xff0c;喊一句号子鼓励自己&#xff1a;程序员永不失业&#xff0c;程序员走向架构&#xff01;本篇Blog的主题是螺旋矩阵&#xff0c;使用【二维数组】这个基本的数据结构来实现 螺旋矩阵【EASY】 二维数组的结构特性入手 题干 解题思路 根据题目示例 mat…...

LED灯实验--汇编

asm-led.S .text .global _start _start: /* 1. led灯的初始化 *//* 1.1 使能GPIOE、DPIOF外设控制器的时钟 */ldr r0, 0x50000A28ldr r1, [r0]orr r1, r1, #(0x3 << 4)str r1, [r0]/* 1.2 设置PE10、PE8、PF10引脚为输出模式 */ldr r0, 0x50006000ldr r1, [r0]bic r1,…...

Android多线程学习:线程池(一)

一、概念 线程池&#xff1a;创建并维护一定数量的空闲线程&#xff0c;当有需要执行的任务&#xff0c;就交付给线程池中的一个线程&#xff0c;任务执行结束后&#xff0c;该线程也不会死亡&#xff0c;而是回到线程池中重新变为空闲状态。 线程池优点&#xff1a; 1、重用…...

网络安全(黑客技术)—小白自学笔记

1.网络安全是什么 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高&#xff1b; 二、则是发展相对成熟入…...

掌握核心技巧就能创建完美的目录!如何在Word中自动创建目录

目录是Word布局的一个重要因素&#xff0c;尤其是在编写较长的文档时。那么&#xff0c;你如何在你的作品中添加目录呢&#xff1f;在这篇文章中&#xff0c;我将分享一些基于Word2016自动创建目录的经验。希望它能或多或少地帮到你。 自动创建目录 1、输入目录文本的名称&am…...

正则表达式中re.match、re.search、re.findall的用法和区别

这位作者的例子写的非常好&#xff0c;记录一下&#xff0c;目前用到的比较多的是findall 正则表达式中re.match、re.search、re.findall的用法和区别_<re.match object; span(0, 270), match<a href"/-CSDN博客...

算法题:买卖股票的最佳时机含手续费(动态规划解法贪心解法-详解)

这道题有两种解法&#xff1a;动态规划 or 贪心算法。 贪心算法的提交结果要比动态规划好一些&#xff0c;总体上动态规划的解法更容易想到。&#xff08;完整题目附在了最后&#xff09; 1、动态规划解法 设置两个数&#xff0c;dp[0]表示遍历到股票prices[i]时手里没有股…...

【gcc】RtpTransportControllerSend学习笔记 4:码率分配

本文是woder大神 的文章的学习笔记。 大神的webrtc源码分析(8)-拥塞控制(上)-码率预估 详尽而具体,堪称神作。 gcc保障带宽公平性,预估码率后要分配码率,实现qos效果: webrtc源码分析(9)-拥塞控制(下)-码率分配 是 woder 大神进一步给出的另一篇神作。 本文是对(https://w…...

「专题速递」AR协作、智能NPC、数字人的应用与未来

元宇宙是一个融合了虚拟现实、增强现实、人工智能和云计算等技术的综合概念。它旨在创造一个高度沉浸式的虚拟环境&#xff0c;允许用户在其中交互、创造和共享内容。在元宇宙中&#xff0c;人们可以建立虚拟身份、参与虚拟社交&#xff0c;并享受无限的虚拟体验。 作为互联网大…...

什么是基于意图的网络(IBN)

基于意图的网络是一种网络技术&#xff0c;它根据业务意图&#xff08;来自网络管理员的服务请求&#xff09;配置 IT 基础架构&#xff0c;无需任何人工干预&#xff0c;它不断提供关键的网络见解&#xff0c;并不断调整硬件配置以确保满足意图&#xff0c;它将网络从以设备为…...

知识增强语言模型提示 零样本知识图谱问答10.8

知识增强语言模型提示 零样本知识图谱问答 摘要介绍相关工作方法零样本QA的LM提示知识增强的LM提示与知识问题相关的知识检索 摘要 大型语言模型&#xff08;LLM&#xff09;能够执行 零样本closed-book问答任务 &#xff0c;依靠其在预训练期间存储在参数中的内部知识。然而&…...

虚拟现实项目笔记:SDK、Assimp、DirectX Sample Browser、X86和X64

文章目录 SDK是什么Assimp是什么DirectX Sample Browser是什么X86和X64生成解决方案和重新生成解决方案 SDK是什么 SDK是Software Development Kit的英文缩写&#xff0c;意思是软件开发包。 软件开发包中往往包含有多种辅助进行软件开发的内容&#xff0c;包括一些软件开发工…...

openwrt rm500u ncm方式拨号步骤记录

1.进入设备页面 用户名&#xff1a;root 2.创建接口 3.配置接口 国内APN 信息 中国移动APN&#xff1a;CMNET 中国联通APN&#xff1a;3GNET 中国电信APN&#xff1a;CTNET 4.防火墙配置 5.点击Save&Apply 6.配置完成后重启设备。重新进入设备页面&#xff0c;可以看…...

使用js代码将一个值为“1=增量,2=全量“的字符串转化为一个数组,数据格式为[{value:““,label:“‘‘}]

const str "1增量&#xff0c;2全量"; const arr str.split(",").map(item > {const [value, label] item.split("");return { value, label}; });...

图片调色盘

图片预览 配置安装 Color-Thief 安装包使用文档 yarn add colorthief -S // npm install colorthief --save代码 <template><div class"img-thief"><div class"container"><div class"thief-item" v-for"(item, in…...

一文读懂Base64

这几天在和第三方交互的时候&#xff0c;对方返回的数据是base64格式的数据&#xff0c;所以这两天又彻底捋了下Base64的来龙去脉。之前看过一篇文章说的非常好&#xff08;再找到给加上链接&#xff09;&#xff0c;我在这不详细说明了&#xff0c;只说转换过程。 还是使用中…...

CCF CSP认证 历年题目自练 Day20

题目一 试题编号&#xff1a; 201903-1 试题名称&#xff1a; 小中大 时间限制&#xff1a; 1.0s 内存限制&#xff1a; 512.0MB 问题描述&#xff1a; 题目分析&#xff08;个人理解&#xff09; 常规题目&#xff0c;先看输入&#xff0c;第一行输入n表示有多少数字&am…...

【Overload游戏引擎分析】从视图投影矩阵提取视锥体及overload对视锥体的封装

overoad代码中包含一段有意思的代码&#xff0c;可以从视图投影矩阵逆推出摄像机的视锥体&#xff0c;本文来分析一下原理 一、平面的方程 视锥体是用平面来表示的&#xff0c;所以先看看平面的数学表达。 平面方程可以由其法线N&#xff08;A, B, C&#xff09;和一个点Q(x0,…...

vue全局事件总线是什么?有什么用?解决了什么问题,与pinia有什么区别?

全局事件总线快速入门 概念基本概念&#xff08;是什么&#xff1f;&#xff09;核心概念 核心特性和优势(有什么用&#xff1f;)解决了什么问题&#xff1f;主要优势是什么&#xff1f; 案例演示&#xff1f;传递数据-案例演示传递事件-案例演示 与pinia有什么区别&#xff1f…...

【debian 12】:debian系统切换中文界面

目录 目录 项目场景 基础参数 原因分析 解决方案 1.ctrlaltT 打开终端 2.查询当前语言环境&#xff08;我的已经设置成了中文 zh_CN.UTF-8&#xff09; 3.打开语言配置界面 4.最后一步&#xff1a;重启 不要放弃任何一个机会&#xff01; 项目场景&#xff1a; 这两…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...

C# winform教程(二)----checkbox

一、作用 提供一个用户选择或者不选的状态&#xff0c;这是一个可以多选的控件。 二、属性 其实功能大差不差&#xff0c;除了特殊的几个外&#xff0c;与button基本相同&#xff0c;所有说几个独有的 checkbox属性 名称内容含义appearance控件外观可以变成按钮形状checkali…...

Canal环境搭建并实现和ES数据同步

作者&#xff1a;田超凡 日期&#xff1a;2025年6月7日 Canal安装&#xff0c;启动端口11111、8082&#xff1a; 安装canal-deployer服务端&#xff1a; https://github.com/alibaba/canal/releases/1.1.7/canal.deployer-1.1.7.tar.gz cd /opt/homebrew/etc mkdir canal…...

Oracle实用参考(13)——Oracle for Linux物理DG环境搭建(2)

13.2. Oracle for Linux物理DG环境搭建 Oracle 数据库的DataGuard技术方案,业界也称为DG,其在数据库高可用、容灾及负载分离等方面,都有着非常广泛的应用,对此,前面相关章节已做过较为详尽的讲解,此处不再赘述。 需要说明的是, DG方案又分为物理DG和逻辑DG,两者的搭建…...