【算法训练-数组 三】【数组矩阵】螺旋矩阵、旋转图像、搜索二维矩阵
废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是螺旋矩阵,使用【二维数组】这个基本的数据结构来实现
螺旋矩阵【EASY】
二维数组的结构特性入手
题干
解题思路
根据题目示例 matrix = [[1,2,3],[4,5,6],[7,8,9]]
的对应输出 [1,2,3,6,9,8,7,4,5]
可以发现,顺时针打印矩阵的顺序是 “从左向右、从上向下、从右向左、从下向上” 循环。
因此,考虑设定矩阵的 “左、上、右、下” 四个边界,模拟以上矩阵遍历顺序,算法流程:
- 空值处理: 当 matrix 为空时,直接返回空列表 [] 即可。
- 初始化: 矩阵 左、右、上、下 四个边界 l , r , t , b ,用于打印的结果列表 res 。
- 循环打印: “从左向右、从上向下、从右向左、从下向上” 四个方向循环打印。
- 根据边界打印,即将元素按顺序添加至列表 res 尾部。
- 边界向内收缩 1 (代表已被打印)。
- ** 判断边界是否相遇**(是否打印完毕),若打印完毕代表下一个方向无需打印,则跳出。
- 返回值: 返回 res 即可。
整体的打印过程
代码实现
基本数据结构:数组
辅助数据结构:无
算法:无
技巧:无
import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可*** @param matrix int整型二维数组* @return int整型ArrayList*/public ArrayList<Integer> spiralOrder (int[][] matrix) {// 1 入参判断,如果为空数组,返回空集合if (matrix.length < 1) {return new ArrayList<Integer>();}// 2 定义四条边及返回值ArrayList<Integer> result = new ArrayList<Integer>();int left = 0;int right = matrix[0].length - 1;int top = 0;int bottom = matrix.length - 1;// 3 循环打印四条边while (true) {// 3-1 从左向右打印,明确左右边界,打印完后上边界向下移动,并判断是否有必要继续从上到下打印for (int i = left; i <= right; i++) {result.add(matrix[top][i]);}if (++top > bottom) {break;}// 3-2 从上向下打印,明确上下边界,打印完后右边界向左移动,并判断是否有必要继续从右到左打印for (int i = top; i <= bottom; i++) {result.add(matrix[i][right]);}if (left > --right) {break;}// 3-3 从右向左打印,明确左右边界,打印完后下边界向上移动,并判断是否有必要继续从下到上打印for (int i = right; i >= left; i--) {result.add(matrix[bottom][i]);}if (top > --bottom) {break;}// 3-4 从下向上打印,明确上下边界,打印完后左边界向右移动,并判断是否有必要继续从左到右打印for (int i = bottom; i >= top; i--) {result.add(matrix[i][left]);}if (++left > right) {break;}}return result;}
}
++top > bottom
等价于先给 top 自增 1 ,再判断++top > bottom
逻辑表达式
复杂度分析
- 时间复杂度 O(MN) : M,N分别为矩阵行数和列数。
- 空间复杂度 O(1) : 四个边界 l , r , t , b 使用常数大小的额外空间。
旋转图像
和螺旋矩阵类似,也是对一圈数值做处理
题干
解题思路
由原题知整体的旋转公式如下:
如果可以使用辅助矩阵则按如下方式修改即可:
class Solution {public void rotate(int[][] matrix) {int n = matrix.length;// 深拷贝 matrix -> tmpint[][] tmp = new int[n][];for (int i = 0; i < n; i++)tmp[i] = matrix[i].clone();// 根据元素旋转公式,遍历修改原矩阵 matrix 的各元素for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {matrix[j][n - 1 - i] = tmp[i][j];}}}
}
考虑不借助辅助矩阵,通过在原矩阵中直接「原地修改」,实现空间复杂度 **O(1)**的解法。以位于矩阵四个角点的元素为例,设矩阵左上角元素 A 、右上角元素 B 、右下角元素 C 、左下角元素 D 。矩阵旋转 90º 后,相当于依次先后执行 D→A,C→D, B→C, A→B 修改元素,即如下「首尾相接」的元素旋转操作:
如上图所示,由于第 1 步 D→A已经将 A覆盖(导致 A 丢失),此丢失导致最后第 4步 A→B无法赋值。为解决此问题,考虑借助一个「辅助变量 tmp」预先存储 A ,此时的旋转操作变为:
如上图所示,一轮可以完成矩阵 4 个元素的旋转。因而,只要分别以矩阵左上角 1/4的各元素为起始点执行以上旋转操作,
将这些元素旋转完成即完成了整个数组的旋转
具体来看,当矩阵大小n为偶数时,行列均取前n/2,当矩阵大小为奇数时,行取n/2,列取(n+1)/2,因为为奇数时,中间的元素不需要旋转
代码实现
基本数据结构:数组
辅助数据结构:无
算法:无
技巧:无
class Solution {public void rotate(int[][] matrix) {// 1 获取数组长度,依据替换顺序位置matrix[i][j]->matrix[j][n-1-i]推导出ABCD位置int n = matrix.length;//int a=matrix[i][j];int b=matrix[j][n-1-i];int c=matrix[n-1-i][n-1-j];int d=matrix[n-1-j][i];// 2 遍历行列,行取n/2,列取(n+1)/2 为了应对奇数长度的nfor (int i = 0; i < n / 2; i++) {for (int j = 0; j < (n + 1) / 2; j++) {// 2-1 暂存A的位置,用来后续替换Bint temp = matrix[i][j];// 2-2 D替换Amatrix[i][j] = matrix[n - 1 - j][i];// 2-3 C替换Dmatrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];// 2-4 B替换Cmatrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];// 2-5 A替换Bmatrix[j][n - 1 - i] = temp;}}}
}
复杂度分析
时间复杂度 O(N*N): 其中 N 为输入矩阵的行(列)数。需要将矩阵中每个元素旋转到新的位置,即对矩阵所有元素操作一次,使用O(N*N)的时间
空间复杂度 O(1) : 临时变量 tmp使用常数大小的额外空间。值得注意,当循环中进入下轮迭代,上轮迭代初始化的 tmp占用的内存就会被自动释放,因此无累计使用空间。
搜索二维矩阵【MID】
从下题矩阵的特性入手进行查找
题干
解题思路
数组从左到右和从上到下都是升序的,如果从右上角出发开始遍历呢?会发现每次都是向左数字会变小,向下数字会变大,有点和二分查找树相似。二分查找树的话,是向左数字变小,向右数字变大。所以我们可以把 target 和当前值比较。
- 如果 target 的值大于当前值,那么就向下走。
- 如果 target 的值小于当前值,那么就向左走。
- 如果相等的话,直接返回 true 。
也可以换个角度思考
- 如果 target 的值大于当前值,也就意味着当前值所在的行肯定不会存在 target 了,可以把当前行去掉,从新的右上角的值开始遍历。
- 如果 target 的值小于当前值,也就意味着当前值所在的列肯定不会存在 target 了,可以把当前列去掉,从新的右上角的值开始遍历。
看下边的例子
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]如果 target = 9,如果我们从 15 开始遍历, cur = 15target < 15, 去掉当前列, cur = 11
[1, 4, 7, 11],
[2, 5, 8, 12],
[3, 6, 9, 16],
[10, 13, 14, 17],
[18, 21, 23, 26] target < 11, 去掉当前列, cur = 7
[1, 4, 7],
[2, 5, 8],
[3, 6, 9],
[10, 13, 14],
[18, 21, 23] target > 7, 去掉当前行, cur = 8
[2, 5, 8],
[3, 6, 9],
[10, 13, 14],
[18, 21, 23] target > 8, 去掉当前行, cur = 9, 遍历结束
[3, 6, 9],
[10, 13, 14],
[18, 21, 23]
代码实现
基本数据结构:数组
辅助数据结构:无
算法:无
技巧:无
import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可*** @param target int整型* @param array int整型二维数组* @return bool布尔型*/public boolean Find (int target, int[][] array) {// 1 入参判断if (array.length < 1) {return false;}// 2 定义行列边界,从右上角出发,所以初始化为右上角位置int right = array[0].length - 1;int top = 0;// 3 出发开始遍历,明确左右边界的范围while (right >= 0 && top <= array.length - 1) {int curValue = array[top][right];if (curValue > target) {// 3-1 如果当前值大于目标值,舍弃本列right--;} else if (curValue < target) {// 3-2 如果当前值小于目标值,舍弃本行top++;} else {// 3-3 如果当前值等于目标值,找到了目标值return true;}}return false;}
}
复杂度分析
- 时间复杂度 O(M+N) : 只遍历了一遍
- 空间复杂度 O(1) :没有使用额外空间。
拓展知识:二维数组
二维数组是一种常见的数据结构,它由多行和多列组成,可以用来存储和处理二维数据集合,例如矩阵、表格、图像、地图等。在不同的编程语言中,定义和使用二维数组的方式可能有所不同,以下是一些常见编程语言中的示例。
C/C++:
// 定义一个3x3的整数二维数组
int matrix[3][3] = {{1, 2, 3},{4, 5, 6},{7, 8, 9}
};// 访问元素
int element = matrix[1][2]; // 获取第二行第三列的元素,值为6
Python:
# 定义一个3x3的整数二维数组(使用嵌套列表)
matrix = [[1, 2, 3],[4, 5, 6],[7, 8, 9]
]# 访问元素
element = matrix[1][2] # 获取第二行第三列的元素,值为6
Java:
// 定义一个3x3的整数二维数组
int[][] matrix = {{1, 2, 3},{4, 5, 6},{7, 8, 9}
};// 访问元素
int element = matrix[1][2]; // 获取第二行第三列的元素,值为6
常用方法和操作:
-
访问元素: 使用索引来访问二维数组中的特定元素,例如
matrix[i][j]
,其中i
表示行号,j
表示列号。 -
遍历二维数组: 使用嵌套循环来遍历二维数组,通常使用一个循环迭代行,另一个循环迭代列,以访问所有元素。
-
初始化: 在定义二维数组时,可以初始化数组的值。可以使用嵌套列表(Python)、嵌套数组(C/C++)或类似方式来初始化。
-
修改元素: 可以通过索引来修改特定元素的值,例如
matrix[i][j] = newValue
。 -
获取数组的行数和列数: 可以使用数组的长度或大小来获取行数和列数。
-
在算法中使用: 二维数组在解决各种问题时非常有用,例如矩阵运算、图算法、迷宫求解等。
-
释放内存(C/C++): 在使用动态分配内存创建二维数组时,需要谨慎释放内存以防止内存泄漏。
二维数组是一种非常灵活和强大的数据结构,可以在各种应用中发挥作用,从简单的数据存储到复杂的算法实现。
相关文章:
【算法训练-数组 三】【数组矩阵】螺旋矩阵、旋转图像、搜索二维矩阵
废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是螺旋矩阵,使用【二维数组】这个基本的数据结构来实现 螺旋矩阵【EASY】 二维数组的结构特性入手 题干 解题思路 根据题目示例 mat…...
LED灯实验--汇编
asm-led.S .text .global _start _start: /* 1. led灯的初始化 *//* 1.1 使能GPIOE、DPIOF外设控制器的时钟 */ldr r0, 0x50000A28ldr r1, [r0]orr r1, r1, #(0x3 << 4)str r1, [r0]/* 1.2 设置PE10、PE8、PF10引脚为输出模式 */ldr r0, 0x50006000ldr r1, [r0]bic r1,…...
Android多线程学习:线程池(一)
一、概念 线程池:创建并维护一定数量的空闲线程,当有需要执行的任务,就交付给线程池中的一个线程,任务执行结束后,该线程也不会死亡,而是回到线程池中重新变为空闲状态。 线程池优点: 1、重用…...
网络安全(黑客技术)—小白自学笔记
1.网络安全是什么 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高; 二、则是发展相对成熟入…...
掌握核心技巧就能创建完美的目录!如何在Word中自动创建目录
目录是Word布局的一个重要因素,尤其是在编写较长的文档时。那么,你如何在你的作品中添加目录呢?在这篇文章中,我将分享一些基于Word2016自动创建目录的经验。希望它能或多或少地帮到你。 自动创建目录 1、输入目录文本的名称&am…...
正则表达式中re.match、re.search、re.findall的用法和区别
这位作者的例子写的非常好,记录一下,目前用到的比较多的是findall 正则表达式中re.match、re.search、re.findall的用法和区别_<re.match object; span(0, 270), match<a href"/-CSDN博客...
算法题:买卖股票的最佳时机含手续费(动态规划解法贪心解法-详解)
这道题有两种解法:动态规划 or 贪心算法。 贪心算法的提交结果要比动态规划好一些,总体上动态规划的解法更容易想到。(完整题目附在了最后) 1、动态规划解法 设置两个数,dp[0]表示遍历到股票prices[i]时手里没有股…...
【gcc】RtpTransportControllerSend学习笔记 4:码率分配
本文是woder大神 的文章的学习笔记。 大神的webrtc源码分析(8)-拥塞控制(上)-码率预估 详尽而具体,堪称神作。 gcc保障带宽公平性,预估码率后要分配码率,实现qos效果: webrtc源码分析(9)-拥塞控制(下)-码率分配 是 woder 大神进一步给出的另一篇神作。 本文是对(https://w…...
「专题速递」AR协作、智能NPC、数字人的应用与未来
元宇宙是一个融合了虚拟现实、增强现实、人工智能和云计算等技术的综合概念。它旨在创造一个高度沉浸式的虚拟环境,允许用户在其中交互、创造和共享内容。在元宇宙中,人们可以建立虚拟身份、参与虚拟社交,并享受无限的虚拟体验。 作为互联网大…...
什么是基于意图的网络(IBN)
基于意图的网络是一种网络技术,它根据业务意图(来自网络管理员的服务请求)配置 IT 基础架构,无需任何人工干预,它不断提供关键的网络见解,并不断调整硬件配置以确保满足意图,它将网络从以设备为…...
知识增强语言模型提示 零样本知识图谱问答10.8
知识增强语言模型提示 零样本知识图谱问答 摘要介绍相关工作方法零样本QA的LM提示知识增强的LM提示与知识问题相关的知识检索 摘要 大型语言模型(LLM)能够执行 零样本closed-book问答任务 ,依靠其在预训练期间存储在参数中的内部知识。然而&…...
虚拟现实项目笔记:SDK、Assimp、DirectX Sample Browser、X86和X64
文章目录 SDK是什么Assimp是什么DirectX Sample Browser是什么X86和X64生成解决方案和重新生成解决方案 SDK是什么 SDK是Software Development Kit的英文缩写,意思是软件开发包。 软件开发包中往往包含有多种辅助进行软件开发的内容,包括一些软件开发工…...
openwrt rm500u ncm方式拨号步骤记录
1.进入设备页面 用户名:root 2.创建接口 3.配置接口 国内APN 信息 中国移动APN:CMNET 中国联通APN:3GNET 中国电信APN:CTNET 4.防火墙配置 5.点击Save&Apply 6.配置完成后重启设备。重新进入设备页面,可以看…...
使用js代码将一个值为“1=增量,2=全量“的字符串转化为一个数组,数据格式为[{value:““,label:“‘‘}]
const str "1增量,2全量"; const arr str.split(",").map(item > {const [value, label] item.split("");return { value, label}; });...
图片调色盘
图片预览 配置安装 Color-Thief 安装包使用文档 yarn add colorthief -S // npm install colorthief --save代码 <template><div class"img-thief"><div class"container"><div class"thief-item" v-for"(item, in…...
一文读懂Base64
这几天在和第三方交互的时候,对方返回的数据是base64格式的数据,所以这两天又彻底捋了下Base64的来龙去脉。之前看过一篇文章说的非常好(再找到给加上链接),我在这不详细说明了,只说转换过程。 还是使用中…...
CCF CSP认证 历年题目自练 Day20
题目一 试题编号: 201903-1 试题名称: 小中大 时间限制: 1.0s 内存限制: 512.0MB 问题描述: 题目分析(个人理解) 常规题目,先看输入,第一行输入n表示有多少数字&am…...
【Overload游戏引擎分析】从视图投影矩阵提取视锥体及overload对视锥体的封装
overoad代码中包含一段有意思的代码,可以从视图投影矩阵逆推出摄像机的视锥体,本文来分析一下原理 一、平面的方程 视锥体是用平面来表示的,所以先看看平面的数学表达。 平面方程可以由其法线N(A, B, C)和一个点Q(x0,…...
vue全局事件总线是什么?有什么用?解决了什么问题,与pinia有什么区别?
全局事件总线快速入门 概念基本概念(是什么?)核心概念 核心特性和优势(有什么用?)解决了什么问题?主要优势是什么? 案例演示?传递数据-案例演示传递事件-案例演示 与pinia有什么区别?…...
【debian 12】:debian系统切换中文界面
目录 目录 项目场景 基础参数 原因分析 解决方案 1.ctrlaltT 打开终端 2.查询当前语言环境(我的已经设置成了中文 zh_CN.UTF-8) 3.打开语言配置界面 4.最后一步:重启 不要放弃任何一个机会! 项目场景: 这两…...
es官方为我们提供的堆内存保护机制-熔断器( breaker )
总熔断器(相当于似乎总闸) 参数: indices.breaker.total.use_real_memory 默认值:true 在 elasticsearch.yml中配置。 参数: indices.breaker.total.limit 如果 indices.breaker.total.use_real_memory : true, in…...
靶场通关记录
OSCP系列靶场-Esay-CyberSploit1 总结 getwebshell → 源码注释发现用户名 → robots.txt发现base64密码 → SSH登录 提 权 思 路 → 内网信息收集 → 发现发行版本有点老 → 内核overlayfs提权 准备工作 启动VPN 获取攻击机IP > 192.168.45.220 启动靶机 获取目标机器I…...
全网最新最全的软件测试面试题
一、前言 与开发工程师相比,软件测试工程师前期可能不会太深,但涉及面还是很广的。 在一年左右的实习生或岗位的早期面试中,主要是问一些基本的问题。 涉及到的知识主要包括MySQL数据库的使用、Linux操作系统的使用、软件测试框架问题、测试…...
如何列出 Ubuntu 和 Debian 上已安装的软件包
当你安装了 Ubuntu 并想好好用一用。但在将来某个时候,你肯定会遇到忘记曾经安装了那些软件包。 这个是完全正常。没有人要求你把系统里所有已安装的软件包都记住。但是问题是,如何才能知道已经安装了哪些软件包?如何查看安装过的软件包呢&a…...
图论---最小生成树问题
在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。解决最小生成树问题一般有两种算法:Kruskal算法和Prim算法。 Kruskal算法 原理:基本思想是从小到大加入边,是个贪心算法。我们将图中的每个边按…...
elementplus 时间范围选择器限制选择时间范围
<el-date-pickerv-model"form.time" type"daterange"range-separator"-"start-placeholder"开始时间"end-placeholder"结束":disabled-date"disabledDate"calendar-Change"calendarChange" />co…...
【网络】抓包工具Wireshark下载安装和基本使用教程
🍁 博主 "开着拖拉机回家"带您 Go to New World.✨🍁 🦄 个人主页——🎐开着拖拉机回家_Linux,大数据运维-CSDN博客 🎐✨🍁 🪁🍁 希望本文能够给您带来一定的帮助…...
Metasequoia 4 水杉3D建模工具 附序列号
Metasequoia 4是一款非常强大的3D水杉建模工具,它基于多边形建模技术,可以用于创建各种对象并支持多种第三方3DCG软件的文件格式,是一款非常适合从爱好到业务,支持3D电脑绘图,3D印刷,游戏开发等的3D建模软件…...
股票杠杆交易平台排名:淘配网推荐的十大平台
在投资世界中,股票杠杆交易一直以其提供更高回报机会的吸引力而备受欢迎。随着市场的不断发展,出现了越来越多的股票杠杆交易平台。本文将为您介绍淘配网推荐的十大股票杠杆交易平台,并分析它们的特点。 富灯网 - 富灯网以其全面的杠杆产品和…...
CoreData + CloudKit 在初始化 Schema 时报错 A Core Data error occurred 的解决
问题现象 如果希望为 CoreData 支持的 App 增加云数据备份和同步功能,那么 CloudKit 是绝佳的选择。CloudKit 会帮我们默默处理好一切,我们基本不用为升级而操心。 不过,有时在用本地 CoreData NSManagedObjectModel 初始化 iCloud 中的 Schema 时会发生如下错误: Error …...
网站地图什么时候提交好/软文推广500字
之前有同事问我,多层view嵌套使用,并根据不同的state改变界面布局问题。当时提供了一个简单的思路,但事后没有整理。今天打算来整理一下。废话不多说,直接上代码: 基本结构: ViewController.m #import &quo…...
阿里巴巴1688怎么做网站/推广网站平台
一、JDBC 1. 概念 JDBC(Java DataBase Connectivity),Java 数据库连接, Java语言操作数据库JDBC本质:其实是官方(sun公司)定义的一套操作所有关系型数据库的规则,即接口。各个数据…...
企业网站建设公司/seo软件开发
一、Monit简介 Monit是一个跨平台的用来监控Unix/Linux系统(比如Linux、BSD、OSX、Solaris)的工具。 易于安装,轻量级(只有500KB大小),不依赖于任何第三方程序、插件或者库。 Monit可以监控服务器进程状态…...
惠州做网站公司/seo排名优化培训
点击上面微信号关注我关注我哟每天中午12:00-2:00定期推送文章,喜欢的可以设置星标,并分享点赞我们的文章,非常感谢大家的支持,您的点击的在看就是我们的动力!上期我们分享选择题的解析…...
济南网站建设首推企优互联不错/怎么创建网站平台
e是自然对数的底数,是一个无限不循环小百数。 e在科学技术中用得非常多,学习了高等数学后就会知道度,许多问结果和它有紧密的联系,以e为底数,许多式子都是最.e 2.718281828459 …… e是自然对数的底数,是一…...
手机网站怎么做的/营销手段和营销方式
好不容易坚持到第五天了,继续继续!!! 今天老师没有讲JAVA的for循环,倒是讲了HTML的相关内容; 讲了JAVA代码怎么在HTML中运行。 只要在HTML加入这个 background-color是背景颜色的意思。这个没没什么意思。 …...