当前位置: 首页 > news >正文

深度强化学习第 1 章 机器学习基础

1.1线性模型

线性模型(linear models)是一类最简单的有监督机器学习模型,常被用于简单的机
器学习任务。可以将线性模型视为单层的神经网络。本节讨论线性回归逻辑斯蒂回归(logistic regression)、 softmax 分类器等三种模型。

1.1.1线性回归

在这里插入图片描述

1.1.2逻辑斯蒂回归

在这里插入图片描述
sigmoid 是个激活函数(activation function)
在这里插入图片描述

交叉熵(cross entropy),它常被用作分类问题的损失函数
在这里插入图片描述
与交叉熵类似的是 KL 散度(Kullback-Leibler divergence),也被称作相对熵(relative entropy),用来衡量两个概率分布的区别有多大。对于离散分布, KL 散度的定义为
在这里插入图片描述
在这里插入图片描述

由于熵 H ( p ) H(p) H(p) 是不依赖于 q 的常数,一旦固定 p,则 KL 散度等于交叉熵加上常数。如果p 是固定的,那么关于 q 优化 KL 散度等价于优化交叉熵。这就是为什么常用交叉熵作为损失函数。
在这里插入图片描述

1.1.3 Softmax 分类器

本小节研究多元分类(multi-class classification)问题,数据可以划分为 k(> 2)个类别。

在这里插入图片描述
softmax 函数让最大的元素相对变得更大,让小的元素接近 0。
在这里插入图片描述在这里插入图片描述

1.2神经网络

本节简要介绍全连接神经网络卷积神经网络,并将它们用于多元分类问题。全连接层和卷积层被广泛用于深度强化学习。循环层注意力层也是常见的神经网络结构,本书将在需要用到它们的地方详细讲解这两种结构。

1.2.1 全连接神经网络(多层感知器)

线性分类器表现差的原因在于模型太小,不能充分利用n = 60, 000 个训练样本。然而我们可以把“线性函数 + 激活函数”这样的结构一层层堆积起来,得到一个多层网络,获得更高的预测准确率。

全连接层:

在这里插入图片描述

全连接神经网络

我们可以把全连接层当做基本组件,然后像搭积木一样搭建一个全连接神经网络(fully-connected neural network),也叫多层感知器(multi-layer perceptron,缩写 MLP)

在这里插入图片描述

编程实现:

可以用 TensorFlow、 PyTorch、 Keras 等深度学习标准库实现全连接神经网络,只需要一、两行代码就能添加一个全连接层。添加一个全连接层需要用户指定两个超参数:

  • 层的宽度
    比如 MNIST数据集有 10 类,那么输出层的宽度必须是 10。而对于二元分类问题,输出层的宽度是 1。
  • 激活函数
    对于隐层,通常使用 ReLU 激活函数。对于输出层,激活函数的选择取决于具体问题。二元分类问题用 sigmoid,多元分类问题用 softmax,回归问题可以不用激活函数。

1.2.2 卷积神经网络

卷积神经网络(convolutional neural network,缩写 CNN)是主要由卷积层组成的神经网络.
把最后一个卷积层输出的张量转换为一个向量,即向量化(vectorization)。这个向量是 CNN 从输入的张量中提取的特征。

本书不具体解释 CNN 的原理,本书也不会用到这些原理。读者仅需要记住这个知识点: CNN 的输入是矩阵或三阶张量, CNN 从该张量中提取特征,输出提取的特征向量。
图片通常是矩阵(灰度图片)和三阶张量(彩色图片),可以用 CNN 从中提取特征,然后用一个或多个全连接层做分类或回归。
在这里插入图片描述
在这里插入图片描述

1.3反向传播和梯度下降

在这里插入图片描述
对于这样一个无约束的最小化问题,最常使用的算法是梯度下降(gradient descent, 缩写GD)和随机梯度下降(stochastic gradient descent, 缩写 SGD)。

1.3.1 梯度下降

1.3.2 反向传播

SGD 需要用到损失函数关于模型参数的梯度。对于一个深度神经网络,我们利用反
向传播(backpropagation, 缩写 BP)求损失函数关于参数的梯度。如果用TensorFlow 和PyTorch 等深度学习平台,我们可以不关心梯度是如何求出来的。只要定义的函数关于某个变量可微, TensorFlow 和 PyTorch 就可以自动求该函数关于这个变量的梯度。

相关文章:

深度强化学习第 1 章 机器学习基础

1.1线性模型 线性模型(linear models)是一类最简单的有监督机器学习模型,常被用于简单的机 器学习任务。可以将线性模型视为单层的神经网络。本节讨论线性回归、逻辑斯蒂回归(logistic regression)、 softmax 分类器等…...

第一章 STM32 CubeMX (CAN通信发送)基础篇

第一章 STM32 CubeMX (CAN通信)基础篇 文章目录 第一章 STM32 CubeMX (CAN通信)基础篇STM32中文手册简介简介stm32f1系列CAN的特点CAN连接网络示意图硬件电路CAN波特率计数 一、 STM32 CubeMX设置设置波特率工程目录结构添加CAN驱…...

原子性操作

原子性操作是指一个操作在执行过程中不会被中断,要么全部执行成功,要么全部不执行,不会出现部分执行的情况。原子性操作对于多线程并发编程至关重要,因为它可以确保多个线程之间不会出现竞态条件或数据不一致性。 在计算机科学中…...

论文阅读:Segment Any Point Cloud Sequences by Distilling Vision Foundation Models

目录 概要 Motivation 整体架构流程 技术细节 小结 论文地址:[2306.09347] Segment Any Point Cloud Sequences by Distilling Vision Foundation Models (arxiv.org) 代码地址:GitHub - youquanl/Segment-Any-Point-Cloud: [NeurIPS23 Spotlight]…...

Netty 入门 — 亘古不变的Hello World

这篇文章我们正式开始学习 Netty,在入门之前我们还是需要了解什么是 Netty。 什么是 Netty 为什么很多人都推崇 Java boy 去研究 Netty?Netty 这么高大上,它到底是何方神圣? 用官方的话说:Netty 是一款异步的、基于事…...

idea插件开发javax.net.ssl.SSLException: No PSK available. Unable to resume.

idea插件开发,编译出错 javax.net.ssl.SSLException: No PSK available. Unable to resume.at java.base/sun.security.ssl.Alert.createSSLException(Alert.java:129)at java.base/sun.security.ssl.Alert.createSSLException(Alert.java:117)at java.base/sun.security.ssl.…...

Selenium的WebDriver操作页面的超时或者元素重叠引起的ElementClickInterceptedException

超时 处理由页面加载引起的超时是在使用 Selenium 进行自动化测试中常见的任务。页面加载可能因网络速度慢、页面复杂性或异步操作而导致超时。以下是一些处理页面加载超时的方法: 1.设置隐式等待时间: 使用 implicitly_wait 方法可以设置隐式等待时间…...

oracle数据库的缓存设置

Oracle缓存由两个参数控制SGA_TARGET和PGA_AGGREGATE_TARGET,设置了这两个参数,其他的基本内存部分都由Oracle自动配置为最优值,这也是Oracle推荐的方式。 SGA_TARGET 和PGA_AGGREGATE_TARGET是动态参数,可以在不重启数据库的情况…...

算法通关村第一关-链表青铜挑战笔记

欢迎来到 : 第一关青铜关 java如何创建链表链表怎么增删改查 我们先了解链表 单链表的概念 我们从简单的创建和增删改查开始. 链表的概念 线性表分为顺序表(数组组成)和链表(节点组成) . 链表又分: 单向 双向有哨兵节点 无哨兵节点循环 不循环 链表是一种物理存储单…...

✔ ★【备战实习(面经+项目+算法)】 10.15学习时间表

✔ ★【备战实习(面经项目算法)】 坚持完成每天必做如何找到好工作1. 科学的学习方法(专注!效率!记忆!心流!)2. 每天认真完成必做项,踏实学习技术 认真完成每天必做&…...

pytorch 训练时raise EOFError EOFError

训练到一半时获取验证数据报错 报错代码 imgs next(iter(val_dataloader)) val_dataloader DataLoader(ImageDataset("data/%s" % opt.dataset_name, transforms_transforms_, unalignedTrue, mode"test"),batch_size5,shuffleTrue,num_workers2,)def …...

node.js+NPM包管理器+Webpack打包工具+前端项目搭建

javascript运行环境(无需依赖html文件) BFF,服务于前端的后端 官网下载安装,node -v查看是否安装成功 ①、创建一个01.js文件 //引入http模块 const httprequire(http)//创建服务器 http.createServer(function(request,respo…...

PCL点云处理之基于FPFH特征的全局配准流程具体实现(二百二十一)

PCL点云处理之基于FPFH特征的全局配准流程具体实现(二百二十一) 一、算法介绍二、算法实现1.代码2.效果一、算法介绍 PCL点云库提供的多种工具,可以组合为一套完整的点云配准流程,这里选择FPFH特征,进行具体的配准流程实现,主要内容包括点云读取、点云法线计算、点云特征…...

ai_drive67_基于不确定性的多视图决策融合

论文链接:https://openreview.net/forum?idOOsR8BzCnl5 https://arxiv.org/abs/2102.02051 代码链接:https://github.com/hanmenghan/TMC Zongbo Han, Changqing Zhang, Huazhu Fu, Joey Tianyi Zhou, Trusted Multi-View Classification, Internatio…...

Docker逃逸---procfs文件挂载

一、产生原因 将宿主机/proc目录挂载进了容器,而该目录内的/proc/sys/kernel/core_pattern文件是负责进程奔溃时内存数据转储的,当第一个字符是| 管道符时,后面的部分会以命令行的方式进行解析并运行,攻击者可以将恶意文件写入该…...

[Python小项目] 从桌面壁纸到AI绘画

从桌面壁纸到AI绘画 一、前言 1.1 确认问题 由于生活和工作需要,小编要长时间的使用电脑,小编又懒,一个主题用半年的那种,所以桌面壁纸也是处于常年不更换的状态。即时改变主题也是在微软自带的壁纸中选择,而这些自…...

【Docker 内核详解】namespace 资源隔离(五):User namespaces

【Docker 内核详解 - namespace 资源隔离】系列包含: namespace 资源隔离(一):进行 namespace API 操作的 4 种方式namespace 资源隔离(二):UTS namespace & IPC namespacenamespace 资源隔…...

网络原理必知会

衔接上文:网络原理必知会_念君思宁的博客-CSDN博客 流量控制: 流量控制也是保证可靠性的机制 对于滑动窗口,批量发送数据而言,窗口越大,相当于批量发送的数据越多,整体的速度也就越快了,但是&…...

ELK 日志分析系统介绍与部署

目录 一、ELK 简介: 1.开源工具介绍: 2.其它组件: 2.1 Filebeat: 2.2 Fluentd: 2.3 缓存/消息队列(redis、kafka、RabbitMQ等): 3. filebeat 结合 logstash 带来好处: 二、为什么要…...

Android 内存治理之线程

1、 前言 当我们在应用程序中启动一个线程的时候,也是有可能发生OOM错误的。当我们看到以下log的时候,就说明系统分配线程栈失败了。 java.lang.OutOfMemoryError: pthread_create (1040KB stack) failed: Out of memory这种情况可能是两种原因导致的。…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化

是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可&#xff0c…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代,运营商作为信息通信网络的核心枢纽,承载着海量用户数据与关键业务传输,其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级,传统安全防护体系逐渐暴露出局限性&a…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一:HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二:Floyd 快慢指针法(…...

数据分析六部曲?

引言 上一章我们说到了数据分析六部曲,何谓六部曲呢? 其实啊,数据分析没那么难,只要掌握了下面这六个步骤,也就是数据分析六部曲,就算你是个啥都不懂的小白,也能慢慢上手做数据分析啦。 第一…...

dvwa11——XSS(Reflected)

LOW 分析源码&#xff1a;无过滤 和上一关一样&#xff0c;这一关在输入框内输入&#xff0c;成功回显 <script>alert(relee);</script> MEDIUM 分析源码&#xff0c;是把<script>替换成了空格&#xff0c;但没有禁用大写 改大写即可&#xff0c;注意函数…...

板凳-------Mysql cookbook学习 (十--2)

5.12 模式匹配中的大小写问题 mysql> use cookbook Database changed mysql> select a like A, a regexp A; ------------------------------ | a like A | a regexp A | ------------------------------ | 1 | 1 | --------------------------…...