AtCoder abc130
F题提交了无数遍,最后发现是三分求解的写法错了
C - Rectangle Cutting
盲猜都在xy的中心点时可以无限分割,否则不能
D - Enough Array
前缀和二分求位置
E - Common Subsequence
公共子序列求有几种组合
设 d p [ i ] [ j ] dp[i][j] dp[i][j]代表s取到i t取到j时的序列数
当s[i]!=t[j] 时
d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] − d p [ i − 1 ] [ j − 1 ] dp[i][j]=dp[i-1] [j] + dp[i][j - 1] - dp[i - 1][j - 1] dp[i][j]=dp[i−1][j]+dp[i][j−1]−dp[i−1][j−1]
因为 d p [ i ] [ j ] dp[i][j] dp[i][j]可以视作为 d p [ i − 1 ] [ j ] dp[i - 1][j] dp[i−1][j]添上s[i]后总的序列数
d p [ i − 1 ] [ j ] dp[i-1][j] dp[i−1][j]是 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i−1][j−1]添上t[j]的序列数
另一边 d p [ i ] [ j − 1 ] dp[i][j - 1] dp[i][j−1]也将 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i−1][j−1]包含在内,因此计算了两次 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i−1][j−1]需要减去
当s[i]==t[j]时, d p [ i ] [ j ] dp[i][j] dp[i][j]在 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i−1][j−1]的序列上各增加一个长度,因此在刚才的计算后再加上 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i−1][j−1]
# -*- coding: utf-8 -*-
# @time : 2023/6/2 13:30
# @author : yhdu@tongwoo.cn
# @desc :
# @file : atcoder.py
# @software : PyCharm
import bisect
import copy
import sys
from sortedcontainers import SortedList
from collections import defaultdict, Counter, deque
from functools import lru_cache, cmp_to_key
import heapq
import math
sys.setrecursionlimit(100010)mod = 10 ** 9 + 7def main():items = sys.version.split()if items[0] == '3.10.6':fp = open("in.txt")else:fp = sys.stdinn, m = map(int, fp.readline().split())s = list(map(int, fp.readline().split()))t = list(map(int, fp.readline().split()))dp = [[0] * (m + 1) for _ in range(n + 1)]for i in range(n + 1):dp[i][0] = 1for i in range(m + 1):dp[0][i] = 1for i in range(1, n + 1):for j in range(1, m + 1):if s[i - 1] == t[j - 1]:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]else:dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1]dp[i][j] %= modprint(dp[n][m])if __name__ == "__main__":main()
F - Minimum Bounding Box
max-min显然是凸函数(忘了证明方法),暴力三分可以过
还有一种不那么暴力的解法:
不需要维护所有的x y
只需要维护向上、向下的y中最大值与最小值
向左向右x最大值与最小值
# -*- coding: utf-8 -*-
# @time : 2023/6/2 13:30
# @author : yhdu@tongwoo.cn
# @desc :
# @file : atcoder.py
# @software : PyCharm
import bisect
import copy
import sys
from sortedcontainers import SortedList
from collections import defaultdict, Counter, deque
from functools import lru_cache, cmp_to_key
import heapq
import math
sys.setrecursionlimit(100010)def main():items = sys.version.split()if items[0] == '3.10.6':fp = open("in.txt")else:fp = sys.stdinn = int(fp.readline())min_x, min_y, max_x, max_y = 10 ** 20, 10 ** 20, -10 ** 20, -10 ** 20uy, dy, lx, rx = [], [], [], []for i in range(n):items = fp.readline().strip().split()x, y = int(items[0]), int(items[1])d = items[2]if d == 'U':uy.append(y)min_x, max_x = min(min_x, x), max(max_x, x)elif d == 'D':dy.append(y)min_x, max_x = min(min_x, x), max(max_x, x)elif d == 'L':lx.append(x)min_y, max_y = min(min_y, y), max(max_y, y)else:rx.append(x)min_y, max_y = min(min_y, y), max(max_y, y)uy.sort()dy.sort()lx.sort()rx.sort()def get(t):x0, y0, x1, y1 = min_x, min_y, max_x, max_yif len(uy) > 0:y0 = min(uy[0] + t, y0)y1 = max(uy[-1] + t, y1)if len(dy) > 0:y0 = min(dy[0] - t, y0)y1 = max(dy[-1] - t, y1)if len(rx) > 0:x0 = min(rx[0] + t, x0)x1 = max(rx[-1] + t, x1)if len(lx) > 0:x0 = min(lx[0] - t, x0)x1 = max(lx[-1] - t, x1)return (y1 - y0) * (x1 - x0)lo, hi = 0, 10 ** 13c = 0ans = 1e18while c < 400:m0, m1 = lo + (hi - lo) / 3, hi - (hi - lo) / 3a0, a1 = get(m0), get(m1)if a0 > a1:lo = m0else:hi = m1ans = min(ans, a0)ans = min(ans, a1)c += 1print(ans)if __name__ == "__main__":main()
相关文章:
AtCoder abc130
F题提交了无数遍,最后发现是三分求解的写法错了 C - Rectangle Cutting 盲猜都在xy的中心点时可以无限分割,否则不能 D - Enough Array 前缀和二分求位置 E - Common Subsequence 公共子序列求有几种组合 设 d p [ i ] [ j ] dp[i][j] dp[i][j]代表s取到…...

数据库、数据中台、数据仓库、数据湖区别
数据时代,各行业的企业都已经开始通过数据库来沉淀数据,但是真的论起数据库、数据仓库、数据中台,还是新出现的数据湖,它们的概念和区别,可能知道的人就比较少了,今天我们详细来比较了解一下。 一、数据仓…...
缺失的数据范围,思维,hduoj
Problem Description 著名出题人小Q出过非常多的题目,在这个漫长的过程中他发现,确定题目的数据范围是非常痛苦的一件事。 每当思考完一道题目的时间效率,小Q就需要结合时限以及评测机配置来设置合理的数据范围。 因为确定数据范围是一件痛苦…...

极简的MapReduce实现
目录 1. MapReduce概述 2. 极简MapReduce内存版 3. 复杂MapReduce磁盘版 4. MapReduce思想的总结 1. MapReduce概述 以前写过一篇 MapReduce思想 ,这次再深入一点,简单实现一把单机内存的。MapReduce就是把它理解成高阶函数,需要传入map和…...
更新暑假做过的项目(医学数据多标签分类与多标签分割,医学数据二分类)
写在前面 暑假参与了两个项目,收获颇多。搭建网络有许多走过的弯路与经验,调参也是一个必要的技能,在这里想一并分享给大家我在项目中积累的经验和一些小技巧。 PS:结合个人经验与网上经验,大家斟酌自取。 下面的几个…...

谷歌浏览器访问127.0.0.1时报错 Failed to read the ‘sessionStorage‘ property from ‘Window‘
谷歌浏览器访问 127.0.0.1 时报错如下: Uncaught DOMException: Failed to read the ‘sessionStorage’ property from ‘Window’: Access is denied for this document. 原因: 谷歌浏览器设置中禁止了 127.0.0.1 存储数据到浏览器设备上 解决方法…...

云技术分享 | 快速构建 CodeWhisperer 代码生成服务,让 AI 辅助编程
前言 Amazon CodeWhisperer 是 2023 年 4 月份发布的一款通用的、机器学习驱动的代码生成器服务,CodeWhisperer 经过数十亿行 Amazon 和公开可用代码的训练,可以理解用自然语言(英语)编写的评论,可在集成式开发环境 (…...

开发万岳互联网医院APP:技术要点和关键挑战
随着移动技术和互联网的飞速发展,互联网医院APP成为医疗领域的一项重要创新。这些应用程序为患者和医生提供了更多便利和互动性,但开发互联网医院APP也伴随着一系列的技术要点和关键挑战。本文将探讨互联网医院APP的技术要点以及在开发过程中需要面对的挑…...

漫谈下一代防火墙与Web应用防火墙的区别
如今,Web应用程序变得越来越复杂,更是黑客非常感兴趣的目标。在谈到网络安全的话题时,我们总会讨论下一代防火墙与Web应用防火墙的区别。当已经拥有下一代防火墙(NGFW)时,为什么需要Web应用程序防火墙&…...

基于马尔可夫随机场的图像去噪算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1、马尔可夫随机场的基本原理 4.2、基于马尔可夫随机场的图像去噪算法 5.算法完整程序工程 1.算法运行效果图预览 原图: 加入噪声的图像: 滤波后的图像 迭代过程…...
【综合类型第 39 篇】HTTP 状态码详解
这是【综合类型第 39 篇】,如果觉得有用的话,欢迎关注专栏。 注: 本篇博客只是在「阿里云开发者社区版 HTTP 状态码详解」中按自己的写作风格做了断句,归纳整理,方便查看和阅读。 尊重原创,原文链接&…...
win10 hosts文件修改不生效
解决办法可以参考:修改hosts 不生效? 三种方法解决...

网络库OKHttp(1)流程+拦截器
序、慢慢来才是最快的方法。 背景 OkHttp 是一套处理 HTTP 网络请求的依赖库,由 Square 公司设计研发并开源,目前可以在 Java 和 Kotlin 中使用。对于 Android App 来说,OkHttp 现在几乎已经占据了所有的网络请求操作。 OKHttp源码官网 版…...

关于 Invalid bound statement (not found): 错误的解决
关于 Invalid bound statement not found: 错误的解决 前言错误原因解决方法1. 检查SQL映射文件2. 检查MyBatis配置3. 检查SQL语句4. 检查命名约定5. 清除缓存6. 启用日志记录 重点注意 结语 我是将军我一直都在,。! 前言 当开发Java Spring Boot应用程…...

深入理解强化学习——智能体的类型:有模型强化学习智能体与免模型强化学习智能体
分类目录:《深入理解强化学习》总目录 根据智能体学习的事物不同,我们可以把智能体进行归类。基于价值的智能体(Value-based agent)显式地学习价值函数,隐式地学习它的策略。策略是其从学到的价值函数里面推算出来的。…...

vue项目获得开源代码之后跳过登录界面
readme运行 进入到账号和密码 找到main.js 比如说,以上这段代码 剩下next()就成功进入了...

WPS、Excel表格增加一列,序列1到任意大小 / 填充某个范围的数字到列
Excel添加一列递增的数字方法有如下: 一、最常用的,使用鼠标放到右下角下拉增加 1、选中起始框的右下角,直到显示黑色实心十字 2、一直向下拖动 3、成功 这种填充方式是最常用的,100以内都可以轻松瞬间完成 1~100填充 但是如果…...

在 rider 里用配置 Perforce(P4)的注意事项
整个配置界面里,关键就配2处位置,但是都有些误导性。 1是连接形参的4个参数都得填,字符集看你项目的要求,这里工作区其实指的是你的工作空间,还不如显示英文的 Workspace 呢,搞得我一开始没填,…...
在Spring中,标签管理的Bean中,为什么使用@Autowired自动装配修饰引用类(前提条件该引用类也是标签管理的Bean)
Autowired是Spring框架的一个注解,它可以用来完成自动装配。 自动装配是Spring框架的一个特性,它可以避免手动去注入依赖,而是由框架自动注入。这样可以减少代码的重复性和提高开发效率。 在使用Autowired注解时,Spring会自动搜…...

俄罗斯YandexGPT 2在国家考试中获得高分;OpenAI API开发者快速入门指南
🦉 AI新闻 🚀 俄罗斯YandexGPT 2聊天机器人成功在国家考试中获得高分 摘要:俄罗斯YandexGPT 2聊天机器人通过国家统一考试文学科目,以55分的加权分数成功进入大学。Yandex团队强调他们在开发过程中确保数据库不包含任何关于统考…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...