五. 激光雷达建图和定位方案-开源SLAM
前面内容:
一. 器件选型心得(系统设计)--1_goldqiu的博客-CSDN博客
一. 器件选型心得(系统设计)--2_goldqiu的博客-CSDN博客
二. 多传感器时间同步方案(时序闭环)--1
三. 多传感器标定方案(空间同步)--1_goldqiu的博客-CSDN博客
三. 多传感器标定方案(空间同步)--2
三. 多传感器标定方案(空间同步)--3
四. 点云着色(真彩点云)方案
五. 激光雷达建图和定位方案-引言-CSDN博客
五. 激光雷达建图和定位方案-基础概念-CSDN博客
五. 激光雷达建图和定位方案-算法工具-CSDN博客
五. 激光雷达建图和定位方案-开源SLAM
LIO-SAM
LIO-SAM的特点是紧耦合:就是将雷达观测、IMU信息拿到一起做状态估计,一起估计包括位姿6个状态变量、bias 6个状态变量、velocity 3个状态变量,一共15个状态变量
imuPreintegration节点做的事:
有两个实例化对象,生成了4个线程(4个回调函数);
TransformFusion中:订阅通过imu估计的雷达里程计信息(后面都称为imu里程计信息),订阅最终优化后的里程计数据(没有增量插值)
TransformFusion这个类产生的数据没有被其它节点使用,只是单纯的为了rviz显示用,所以这个类可以去掉,不影响最后的建图结果
IMUPreintegration中:订阅IMU数据和最终优化后的里程计增量数据,进行因子图优化,估计IMU的bias,输出imu估计的雷达里程计信息(后面都称为imu里程计信息)
这里进行滑窗边缘化的操作是设置一个key变量来记录优化的因子的个数,当超过一定数量后进行边缘化,重置优化器和因子图
imageProjection节点做的事:
只有一个实例化对象,生成了3个线程(3个回调函数)
imageProjection中:订阅雷达数据、IMU数据、IMU里程计数据;获得初始位姿,进行点云去畸变(利用IMU对点云进行去畸变)和投影点云,生成一个自定义消息类型的点云数据(有序点云,有垂直和水平线序)。
featureExtraction节点做的事:
只有一个实例化对象,生成了1个线程(1个回调函数)
FeatureExtraction中:订阅自定义消息类型的有序点云信息,进行了角点和面点的特征提取,发出自定义消息类型的有序特征点云信息。
mapOptmization节点做的事:
有1个实例化对象,生成了3个线程(3个回调函数)
另外有两个线程,一个用于回环检测、一个用于全局地图显示
mapOptmization中:订阅回环、GNSS、自定义点云特征信息;进行点云的配准,将雷达里程计、回环检测、GNSS因子加入因子图进行优化;发布优化后的雷达里程计,包括增量的;发布地图等相关信息。
如何进行回环检测的?
构建关键帧,将关键帧的位姿存储。以固定频率进行回环检测。每次处理最新的关键帧,通过kdtree寻找历史关键帧中距离和时间满足条件的一个关键帧。然后就认为形成了回环。
形成回环后,历史帧周围25帧,构建局部地图,与当前关键帧进行icp匹配求解位姿变换。
lio-sam 认为里程计累计漂移比较小,所以通过距离与时间这两个概念进行的关键帧的回环检测。
FAST-LIO2
Fast-Lio 采用迭代误差状态卡尔曼滤波(iESKF)来实现紧耦合的 LIO。在滤波器的设计上,Fast-Lio 和 LINS 大体相同,但在卡尔曼增益的计算部分有所区别。众所周知,计算卡尔曼增益时需要对观测对误差状态的雅可比矩阵与自身转置的乘积求逆,当观测的维度较大时求逆将变得耗时,比如有 1000 个点时就需要对 (1000×6)*(1000×6)大小的矩阵求逆。针对此问题,Fast-Lio 采用的新的卡尔曼增益计算方法,需要求逆的矩阵的规模仅与状态量的规模相关,而非观测的规模。
Fast-Lio 兼容旋转式机械激光雷达和 Livox 固态激光雷达,首先对点云做特征提取,并用 IMU递推对特征点做去畸变,然后将激光观测和 IMU预测放到 iESKF 中估计当前时刻的 Position、Velocity、Orientation、Bias 和 Gravity 18维度状态量,所有这些状态量都是位于世界坐标系下的。
Fast-Lio2 相比于 Fast-Lio 使用了增量式的 ikd-Tree 数据结构(五. 激光雷达建图和定位方案-算法工具-CSDN博客)维护 local map,有效降低了对激光点观测查询近邻的耗时,进一步提升了效率;此外,不再提取特征点,所有的点都根据点到面的方式寻找关联;而在其他算法部分,两者差别不大。
相关文章:
五. 激光雷达建图和定位方案-开源SLAM
前面内容: 一. 器件选型心得(系统设计)--1_goldqiu的博客-CSDN博客 一. 器件选型心得(系统设计)--2_goldqiu的博客-CSDN博客 二. 多传感器时间同步方案(时序闭环)--1 三. 多传感器标定方案&a…...
SAP MM学习笔记37 - 请求书照合中的 追加请求/追加Credit 等概念/ 请求书的取消
有关请求书照合,之前学习了一部分,现在再来学其中的一些概念。 其实这些概念也许并不常用,但是你又不能不知道,因为客户会问。 有关请求书,贴一些以前学习的文章,以方便阅读。 SAP MM学习笔记33 - 请求书…...
【C#】Winform实现轮播图
复制后,需要修改的代码: 1、图片文件夹路劲:string folderPath "C:\\Users\\Administrator\\Desktop\\images"; 2、项目命名空间:namespace BuildAction 全窗口代码: using System; using System.Colle…...
MyBatisPlus(十九)自动填充
说明 自动填充指的是,当数据被 插入 或者 更新 的时候,会为指定字段进行一些默认的数据填充。 比如,插入时,会自动填充数据的创建时间和更新时间;更新时,会自动填充数据的更新时间。 实现方式 配置处理器…...
设计模式_命令模式
命令模式 介绍 定义案例问题堆积在哪里解决办法 行为形设计模式 就是把 “发布命令 执行命令”细化为多个角色 每个角色又能继续细化 发布命令 1 打印1-9 a 打印A-G 如果有更多的命令 命令处理方式更加多样性 更复杂 处理命令的顺序拆分角色:降低耦合度 命令类&am…...
python接口自动化测试(六)-unittest-单个用例管理
前面五节主要介绍了环境搭建和requests库的使用,可以使用这些进行接口请求的发送。但是如何管理接口案例?返回结果如何自动校验?这些内容光靠上面五节是不行的,因此从本节开始我们引入python单元测试框架 unittest,用它…...
tomcat 服务器
tomcat 服务器 tomcat: 是一个开源的web应用服务器。区别nginx,nginx主要处理静态页面,那么动态请求(连接数据库,动态页面)并不是nginx的长处,动态的请求会交给tomcat进行处理。 nginx-----转发动态请求-…...
如果你有一次自驾游的机会,你会如何准备?
常常想来一次说走就走的自驾游,但是光是想想就觉得麻烦的事情好多:漫长的公路缺少娱乐方式、偏僻拗口的景点地名难以导航、不熟悉的城市和道路容易违章…… 也因为如此,让我发现了HUAWEI HiCar这个驾驶人的宝藏! 用HUAWEI HiCar…...
关于ts的keyof
type props_type {name: string,age: number }const props: props_type {name: tjq,age: 18 }for (const key in props) { //props[key]出现红色波浪线const value props[key]; }why? 经过我查阅多方资料,在网上看到一个比较合适的例子 地址…...
Go实现CORS(跨域)
引言 很多时候,需要允许Web应用程序在不同域之间(跨域)实现共享资源。本文将简介跨域、CORS的概念,以及如何在Golang中如何实现CORS。 什么是跨域 如果两个 URL 的协议、端口(如果有指定的话)和主机都相…...
第一章:变量和简单的数据类型
第一节 变量 variable(变量),每个变量指向一个值————与该变量相关联的信息 message"hello python world!" print(message) 1.1变量的命名和使用 1.变量名只能包含数字(0~9)、字母(Aa~Zz)和下划线(_)。变量可以使用字母和下划线作为开头,…...
【初识Linux】:常见指令(2)
朋友们、伙计们,我们又见面了,本期来给大家解读一下有关Linux的基础知识点,如果看完之后对你有一定的启发,那么请留下你的三连,祝大家心想事成! C 语 言 专 栏:C语言:从入门到精通 数…...
“torch.load“中出现的“Unexpected key(s) in state_dict“报错问题
问题: 解决: 添加strictFalse,允许加载过程中出现不匹配的键。但请注意,仍然需要确保模型中的主要参数能够正确加载,以确保模型的有效性。 model.load_state_dict(state_dict) # 改为: model.load_state_dict(state…...
使用dasviewer加载osgb模型,不显示纹理,黑乎乎的怎么解决?
答:查看一下是不是点到快捷键切换成无纹理模式了。 DasViewer是由大势智慧自主研发的免费的实景三维模型浏览器,采用多细节层次模型逐步自适应加载技术,让用户在极低的电脑配置下,也能流畅的加载较大规模实景三维模型,提供方便快捷的数据浏览操作。#DasViewer##实景…...
Qtday01(qt简介、简单窗口组件)
今日任务 仿qq登录界面,QT实现 代码: 头文件: #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include <QLineEdit> #include <QLabel> #include <QPushButton> #include <QtDebug> #…...
【SA8295P 源码分析 (一)】41 - SA8295所有镜像位置、拷贝脚本、生成QFIL包 及 Fastboot 下载命令介绍
【SA8295P 源码分析】41 - SA8295所有镜像位置、拷贝脚本、生成QFIL包 及 Fastboot 下载命令介绍 一、SA8295 各镜像位置二、SA8295 QNX 侧镜像拷贝脚本三、SA8295 Android 侧镜像拷贝脚本四、使用QFIL 下载整包五、Fastboot 下载命令整理系列文章汇总见:《【SA8295P 源码分析…...
AtCoder abc130
F题提交了无数遍,最后发现是三分求解的写法错了 C - Rectangle Cutting 盲猜都在xy的中心点时可以无限分割,否则不能 D - Enough Array 前缀和二分求位置 E - Common Subsequence 公共子序列求有几种组合 设 d p [ i ] [ j ] dp[i][j] dp[i][j]代表s取到…...
数据库、数据中台、数据仓库、数据湖区别
数据时代,各行业的企业都已经开始通过数据库来沉淀数据,但是真的论起数据库、数据仓库、数据中台,还是新出现的数据湖,它们的概念和区别,可能知道的人就比较少了,今天我们详细来比较了解一下。 一、数据仓…...
缺失的数据范围,思维,hduoj
Problem Description 著名出题人小Q出过非常多的题目,在这个漫长的过程中他发现,确定题目的数据范围是非常痛苦的一件事。 每当思考完一道题目的时间效率,小Q就需要结合时限以及评测机配置来设置合理的数据范围。 因为确定数据范围是一件痛苦…...
极简的MapReduce实现
目录 1. MapReduce概述 2. 极简MapReduce内存版 3. 复杂MapReduce磁盘版 4. MapReduce思想的总结 1. MapReduce概述 以前写过一篇 MapReduce思想 ,这次再深入一点,简单实现一把单机内存的。MapReduce就是把它理解成高阶函数,需要传入map和…...
更新暑假做过的项目(医学数据多标签分类与多标签分割,医学数据二分类)
写在前面 暑假参与了两个项目,收获颇多。搭建网络有许多走过的弯路与经验,调参也是一个必要的技能,在这里想一并分享给大家我在项目中积累的经验和一些小技巧。 PS:结合个人经验与网上经验,大家斟酌自取。 下面的几个…...
谷歌浏览器访问127.0.0.1时报错 Failed to read the ‘sessionStorage‘ property from ‘Window‘
谷歌浏览器访问 127.0.0.1 时报错如下: Uncaught DOMException: Failed to read the ‘sessionStorage’ property from ‘Window’: Access is denied for this document. 原因: 谷歌浏览器设置中禁止了 127.0.0.1 存储数据到浏览器设备上 解决方法…...
云技术分享 | 快速构建 CodeWhisperer 代码生成服务,让 AI 辅助编程
前言 Amazon CodeWhisperer 是 2023 年 4 月份发布的一款通用的、机器学习驱动的代码生成器服务,CodeWhisperer 经过数十亿行 Amazon 和公开可用代码的训练,可以理解用自然语言(英语)编写的评论,可在集成式开发环境 (…...
开发万岳互联网医院APP:技术要点和关键挑战
随着移动技术和互联网的飞速发展,互联网医院APP成为医疗领域的一项重要创新。这些应用程序为患者和医生提供了更多便利和互动性,但开发互联网医院APP也伴随着一系列的技术要点和关键挑战。本文将探讨互联网医院APP的技术要点以及在开发过程中需要面对的挑…...
漫谈下一代防火墙与Web应用防火墙的区别
如今,Web应用程序变得越来越复杂,更是黑客非常感兴趣的目标。在谈到网络安全的话题时,我们总会讨论下一代防火墙与Web应用防火墙的区别。当已经拥有下一代防火墙(NGFW)时,为什么需要Web应用程序防火墙&…...
基于马尔可夫随机场的图像去噪算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1、马尔可夫随机场的基本原理 4.2、基于马尔可夫随机场的图像去噪算法 5.算法完整程序工程 1.算法运行效果图预览 原图: 加入噪声的图像: 滤波后的图像 迭代过程…...
【综合类型第 39 篇】HTTP 状态码详解
这是【综合类型第 39 篇】,如果觉得有用的话,欢迎关注专栏。 注: 本篇博客只是在「阿里云开发者社区版 HTTP 状态码详解」中按自己的写作风格做了断句,归纳整理,方便查看和阅读。 尊重原创,原文链接&…...
win10 hosts文件修改不生效
解决办法可以参考:修改hosts 不生效? 三种方法解决...
网络库OKHttp(1)流程+拦截器
序、慢慢来才是最快的方法。 背景 OkHttp 是一套处理 HTTP 网络请求的依赖库,由 Square 公司设计研发并开源,目前可以在 Java 和 Kotlin 中使用。对于 Android App 来说,OkHttp 现在几乎已经占据了所有的网络请求操作。 OKHttp源码官网 版…...
关于 Invalid bound statement (not found): 错误的解决
关于 Invalid bound statement not found: 错误的解决 前言错误原因解决方法1. 检查SQL映射文件2. 检查MyBatis配置3. 检查SQL语句4. 检查命名约定5. 清除缓存6. 启用日志记录 重点注意 结语 我是将军我一直都在,。! 前言 当开发Java Spring Boot应用程…...
电商网站的二级怎么做/郴州网站建设网络推广渠道
2019独角兽企业重金招聘Python工程师标准>>> 一、Android Support v4、v7、v13 介绍 Google提供了 Android Support Library package 系列的包来保证** 高版本sdk开发的向下兼容性** (即我们用 4.x 开发时,在 1.6 等版本上,可以使…...
怎么做简单地网站/按效果付费的推广
1. 各种图形混排示例: http://echarts.baidu.com/demo.html#mix-line-bar 2. 如果想把网页上的echarts图表复制到ppt中,可以使用chrome浏览器打开图表页面,然后右键点击图表,点击“复制图像”菜单,到ppt中,…...
wordpress分页页面/seo入门版
各种排序算法(1)冒泡排序 选择排序 快速排序1. 冒泡排序1.1 名字由来:1.2 冒泡思想1.3 原理1.4 时间复杂度:O(n^2)1.5 空间复杂度:11.6 是否稳定:稳定1.7 代码例子2. 选择排序2.1 选择思想2.2 原理2.3 时间…...
google adsense wordpress 插件/竞价推广遇到恶意点击怎么办
由于浏览器的限制,复制功能无法统一实现,如谷歌浏览器更是不支持访问系统的剪贴板。 为了在网页上实现复制功能,我从网上搜了一个方案,利用Flash来做中转,实现复制功能。步骤如下: 一、前端HTML需要复制的…...
wordpress 重复标题/夸克搜索引擎
一. PDM 介绍 物理数据模型(Physical Data Model)PDM,提供了系统初始设计所需要的基础元素,以及相关元素之间的关系;数据库的物理设计阶段必须在此基础上进行详细的后台设计,包括数据库的存储过程、操作…...
品质培训网站建设/广州推广工具
spider-flow初步使用1、爬虫简介2、spider-flow简介3、spider-flow的简单使用3.1、源码拉取3.2、sql文件执行3.3、修改配置文件3.4、启动测试4、用例测试4.1、爬取站点分析4.2、确定爬取信息4.3、爬取信息4.3.1、新建爬取任务4.3.2、配置爬取url4.3.3、配置页码和提取页面信息4…...