当前位置: 首页 > news >正文

基于人工水母优化的BP神经网络(分类应用) - 附代码

基于人工水母优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于人工水母优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.人工水母优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 人工水母算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用人工水母算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.人工水母优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 人工水母算法应用

人工水母算法原理请参考:https://blog.csdn.net/u011835903/article/details/121675877

人工水母算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从人工水母算法的收敛曲线可以看到,整体误差是不断下降的,说明人工水母算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

相关文章:

基于人工水母优化的BP神经网络(分类应用) - 附代码

基于人工水母优化的BP神经网络(分类应用) - 附代码 文章目录 基于人工水母优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.人工水母优化BP神经网络3.1 BP神经网络参数设置3.2 人工水母算法应用 4.测试结果…...

【C++】哈希学习

哈希学习 unordered系列关联式容器哈希结构除留余数法哈希冲突闭散列线性探测二次探测 负载因子开散列开散列增容 闭散列 VS 开散列字符串哈希算法 线性探测 & 二次探测实现拉链法实现 unordered系列关联式容器 unordered系列关联式容器是从C11开始,STL提供的。…...

Nginx的安装——window环境

1、下载Nginx 在官网下载稳定版本: http://nginx.org/en/download.html 以nginx/Windows-1.24.0为例,直接下载 nginx-1.24.0.zip。 下载后解压,解压后如下: 2、启动nginx 在window环境下启动nginx的方法有以下两种: …...

C语言笔记之指针

一.指针含义 1.a、*a与&a的区别 a存储指向变量的地址,*a为指针的值,&a为指针的地址 #include <stdio.h>int main(){/** 测试代码部分一 **/int a12;int *b1;b1&a1;printf(" a1 %d, &a1 %d, b1 %d, *b1 %d, &b1 %d\n\n",a1,&a1…...

【 OpenGauss源码学习 —— 列存储(CU)(二)】

列存储&#xff08;CU&#xff09;&#xff08;二&#xff09; 概述GetCUHeaderSize 函数Compress 函数CU::FillCompressBufHeader 函数CU::CompressNullBitmapIfNeed 函数CU::CompressData 函数 声明&#xff1a;本文的部分内容参考了他人的文章。在编写过程中&#xff0c;我们…...

Java并发面试题:(四)synchronized和lock区别

synchronized 关键字 synchronized关键字解决的是多个线程之间访问资源的同步性&#xff0c;synchronized关键字可以保证被它 修饰的方法或者代码块在任意时刻只能有一个线程执行。 另外&#xff0c;在 Java 早期版本中&#xff0c; synchronized属于重量级锁&#xff0c;效率…...

使用Nginx实现采集端和数据分析平台的数据加密传输

1. 需求描述 目前鸿鹄暴露出来的重要ports如下表&#xff1a; 在实际的生产环境中&#xff0c;结合我司的使用场景&#xff0c;需要在鸿鹄前端安装proxy&#xff0c;用以解决如下两个问题&#xff1a; 1.1 实现http到https的强制跳转 企业环境中&#xff0c;一般会关闭http 80端…...

appium---如何判断原生页面和H5页面

目前app中存在越来越多的H5页面了&#xff0c;对于一些做app自动化的测试来说&#xff0c;要求也越来越高&#xff0c;自动化不仅仅要支持原生页面&#xff0c;也要可以H5中进行操作自动化&#xff0c; webview是什么 webview是属于android中的一个控件&#xff0c;也相当于一…...

【WIFI】【WPS】如何从log角度判断WPS 已经连接上

在Android项目中,由于WPS在Framework 接口中已经remove了 只能通过wpa-supplicant 代码中去判断是否连接上了 这段代码log 表示 PBC模式下没有激活 09-21 22:42:16.221503 3782 3782 D wpa_supplicant: wlan0: 0: 04:cf:4b:21:a0:3e ssid=Openwrt-WPS-tp wpa_ie_len=0 rsn…...

[正式学习java①]——java项目结构,定义类和创建对象,一个标准javabean的书写

目录 一、创建第一个java文件 二、 初始类和对象 三、符合javabean规范的类 一、创建第一个java文件 要想写代码&#xff0c;你得有文件啊 以前的创建方式&#xff1a; 右键新建文本文档&#xff0c;开始写代码&#xff0c;写完改后缀名&#xff0c;保存……这样文件一旦多了…...

day36

今日内容概要 进程基础(操作系统中的概念) 进程调度算法(四种算法) 进程的并行和并发的概念 同步异步阻塞非阻塞的概念 创建进程(进程类Process) Process类的参数 Process类的方法 如何开启多进程 基于TCP协议的高并发程序 进程基础 进程它是操作系统中最重要的概念…...

五. 激光雷达建图和定位方案-开源SLAM

前面内容&#xff1a; 一. 器件选型心得&#xff08;系统设计&#xff09;--1_goldqiu的博客-CSDN博客 一. 器件选型心得&#xff08;系统设计&#xff09;--2_goldqiu的博客-CSDN博客 二. 多传感器时间同步方案&#xff08;时序闭环&#xff09;--1 三. 多传感器标定方案&a…...

SAP MM学习笔记37 - 请求书照合中的 追加请求/追加Credit 等概念/ 请求书的取消

有关请求书照合&#xff0c;之前学习了一部分&#xff0c;现在再来学其中的一些概念。 其实这些概念也许并不常用&#xff0c;但是你又不能不知道&#xff0c;因为客户会问。 有关请求书&#xff0c;贴一些以前学习的文章&#xff0c;以方便阅读。 SAP MM学习笔记33 - 请求书…...

【C#】Winform实现轮播图

复制后&#xff0c;需要修改的代码&#xff1a; 1、图片文件夹路劲&#xff1a;string folderPath "C:\\Users\\Administrator\\Desktop\\images"; 2、项目命名空间&#xff1a;namespace BuildAction 全窗口代码&#xff1a; using System; using System.Colle…...

MyBatisPlus(十九)自动填充

说明 自动填充指的是&#xff0c;当数据被 插入 或者 更新 的时候&#xff0c;会为指定字段进行一些默认的数据填充。 比如&#xff0c;插入时&#xff0c;会自动填充数据的创建时间和更新时间&#xff1b;更新时&#xff0c;会自动填充数据的更新时间。 实现方式 配置处理器…...

设计模式_命令模式

命令模式 介绍 定义案例问题堆积在哪里解决办法 行为形设计模式 就是把 “发布命令 执行命令”细化为多个角色 每个角色又能继续细化 发布命令 1 打印1-9 a 打印A-G 如果有更多的命令 命令处理方式更加多样性 更复杂 处理命令的顺序拆分角色&#xff1a;降低耦合度 命令类&am…...

python接口自动化测试(六)-unittest-单个用例管理

前面五节主要介绍了环境搭建和requests库的使用&#xff0c;可以使用这些进行接口请求的发送。但是如何管理接口案例&#xff1f;返回结果如何自动校验&#xff1f;这些内容光靠上面五节是不行的&#xff0c;因此从本节开始我们引入python单元测试框架 unittest&#xff0c;用它…...

tomcat 服务器

tomcat 服务器 tomcat: 是一个开源的web应用服务器。区别nginx&#xff0c;nginx主要处理静态页面&#xff0c;那么动态请求&#xff08;连接数据库&#xff0c;动态页面&#xff09;并不是nginx的长处&#xff0c;动态的请求会交给tomcat进行处理。 nginx-----转发动态请求-…...

如果你有一次自驾游的机会,你会如何准备?

常常想来一次说走就走的自驾游&#xff0c;但是光是想想就觉得麻烦的事情好多&#xff1a;漫长的公路缺少娱乐方式、偏僻拗口的景点地名难以导航、不熟悉的城市和道路容易违章…… 也因为如此&#xff0c;让我发现了HUAWEI HiCar这个驾驶人的宝藏&#xff01; 用HUAWEI HiCar…...

关于ts的keyof

type props_type {name: string,age: number }const props: props_type {name: tjq,age: 18 }for (const key in props) { //props[key]出现红色波浪线const value props[key]; }why&#xff1f; 经过我查阅多方资料&#xff0c;在网上看到一个比较合适的例子 地址&#xf…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...