随机森林算法(Random Forest)R语言实现
随机森林
- 1. 使用Boston数据集进行随机森林模型构建
- 2. 数据集划分
- 3.构建自变量与因变量之间的公式
- 4. 模型训练
- 5. 寻找合适的ntree
- 6. 查看变量重要性并绘图展示
- 7. 偏依赖图:Partial Dependence Plot(PDP图)
- 8. 训练集预测结果
1. 使用Boston数据集进行随机森林模型构建
library(rio)
library(ggplot2)
library(magrittr)
library(randomForest)
library(tidyverse)
library(skimr)
library(DataExplorer)
library(caret)
library(varSelRF)
library(pdp)
library(iml)
data("boston")as.data.frame(boston)
skim(boston)#数据鸟瞰
plot_missing(boston)#数据缺失
#na.roughfix() #填补缺失
hist(boston$lstat,breaks = 50)
数据展示:
2. 数据集划分
######################################
# 1.数据集划分
set.seed(123)
trains <- createDataPartition(y = boston$lstat,p=0.70,list = F)
traindata <- boston[trains,]
testdata <- boston[-trains,]
3.构建自变量与因变量之间的公式
#因变量自变量构建公式
colnames(boston)
form_reg <- as.formula(paste0("lstat ~",paste(colnames(traindata)[1:15],collapse = "+")))
form_reg
构建的公式:
4. 模型训练
#### 2.1模型mtry的最优选取,mry=12 % Var explained最佳
#默认情况下数据集变量个数的二次方根(分类模型)或1/3(预测模型)
set.seed(123)
n <- ncol(boston)-5
errRate <- c(1) #设置模型误判率向量初始值
for (i in 1:n) {rf_train <- randomForest(form_reg, data = traindata,ntree = 1000,#决策树的棵树p =0.8,mtry = i,#每个节点可供选择的变量数目importance = T #输出变量的重要性)errRate[i] <- mean(rf_train$mse)print(rf_train)
}
m= which.min(errRate)
print(m)
结果:
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 1
Mean of squared residuals: 13.35016% Var explained: 72.5
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 2
Mean of squared residuals: 11.0119% Var explained: 77.31
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 3
Mean of squared residuals: 10.51724% Var explained: 78.33
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 4
Mean of squared residuals: 10.41254% Var explained: 78.55
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 5
Mean of squared residuals: 10.335% Var explained: 78.71
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 6
Mean of squared residuals: 10.22917% Var explained: 78.93
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 7
Mean of squared residuals: 10.25744% Var explained: 78.87
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 8
Mean of squared residuals: 10.11666% Var explained: 79.16
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 9
Mean of squared residuals: 10.09725% Var explained: 79.2
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 10
Mean of squared residuals: 10.09231% Var explained: 79.21
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 11
Mean of squared residuals: 10.12222% Var explained: 79.15
结果显示mtry为11误差最小,精度最高
5. 寻找合适的ntree
#### 寻找合适的ntree
set.seed(123)
rf_train<-randomForest(form_reg,data=traindata,mtry=11,ntree=500,importance = T,proximity=TRUE)
plot(rf_train,main = "ERROR & TREES") #绘制模型误差与决策树数量关系图
运行结果:
6. 查看变量重要性并绘图展示
#### 变量重要性
importance<-importance(rf_train) ##### 绘图法1
barplot(rf_train$importance[,1],main="输入变量重要性测度指标柱形图")
box()
重要性展示:
##### 绘图法2
varImpPlot(rf_train,main = "Variable Importance plot")
varImpPlot(rf_train,main = "Variable Importance plot",type = 1)
varImpPlot(rf_train,sort=TRUE,n.var=nrow(rf_train$importance),main = "Variable Importance plot",type = 2) # 基尼系数
hist(treesize(rf_train)) #展示随机森林模型中每棵决策树的节点数
max(treesize(rf_train));
min(treesize(rf_train))
“%IncMSE” 即increase in mean squared error,通过对每一个预测变量随机赋值,如果该预测变量更为重要,那么其值被随机替换后模型预测的误差会增大。“IncNodePurity”即increase in node purity,通过残差平方和来度量,代表了每个变量对分类树每个节点上观测值的异质性的影响,从而比较变量的重要性。两个指示值均是判断预测变量重要性的指标,均是值越大表示该变量的重要性越大,但分别基于两者的重要性排名存在一定的差异。
7. 偏依赖图:Partial Dependence Plot(PDP图)
部分依赖图可以显示目标和特征之间的关系是线性的、单调的还是更复杂的
缺点: 部分依赖函数中现实的最大特征数是两个,这不是PDP的错,而是2维表示(纸或屏幕)的错,是我们无法想象超过3维的错。
partialPlot(x = rf_train,pred.data = traindata,x.var = cmedv
)
PDP图:
rf_train %>%partial(pred.var = c("cmedv", "age"), chull = TRUE, progress = TRUE) %>%autoplot(contour = TRUE, legend.title = "SOS",option = "B", direction = -1) + theme_bw()+theme(text=element_text(size=12, family="serif"))
交互结果展示:
#预测与指标的关系散点图
plot(lstat ~ cmedv, data = traindata)
8. 训练集预测结果
#图示训练集预测结果
plot(x = traindata$lstat,y = trainpred,xlab = "实际值",ylab = "预测值",main = "随机森林-实际值与预测值比较"
)trainlinmod <- lm(trainpred ~ traindata$lstat) #拟合回归模型
abline(trainlinmod, col = "blue",lwd =2.5, lty = "solid")
abline(a = 0,b = 1, col = "red",lwd =2.5, lty = "dashed")
legend("topleft",legend = c("Mode1","Base"),col = c("blue","red"),lwd = 2.5,lty = c("solid","dashed"))
#测试集预测结果
testpred <- predict(rf_train,newdata = testdata)
#测试集预测误差结果
defaultSummary(data.frame(obs = testdata$lstat,pred = testpred))
#图示测试集结果
plot(x = testdata$lstat,y = testpred,xlab = "实际值",ylab = "预测值",main = "随机森林-实际值与预测值比较"
)
testlinmod <- lm(testpred ~ testdata$lstat)
abline(testlinmod, col = "blue",lwd =2.5, lty = "solid")
abline(a = 0,b = 1, col = "red",lwd =2.5, lty = "dashed")
legend("topleft",legend = c("Mode1","Base"),col = c("blue","red"),lwd = 2.5,lty = c("solid","dashed"))
相关文章:

随机森林算法(Random Forest)R语言实现
随机森林1. 使用Boston数据集进行随机森林模型构建2. 数据集划分3.构建自变量与因变量之间的公式4. 模型训练5. 寻找合适的ntree6. 查看变量重要性并绘图展示7. 偏依赖图:Partial Dependence Plot(PDP图)8. 训练集预测结果1. 使用Boston数据集进行随机森…...

干货 | 八条“黄金规则”解决RF电路寄生信号
PART 01 接地通孔应位于接地参考层开关处流经所布线路的所有电流都有相等的回流。耦合策略固然很多,不过回流通常流经相邻的接地层或与信号线路并行布置的接地。在参考层继续时,所有耦合都仅限于传输线路,一切都非常正常。不过,如…...

Java虚拟机之类加载学习总结
文章目录1 什么是类加载1.1 类加载的应用1.2 类加载过程1.3 类的验证1.4 类初始化顺序2 类加载时机3 类加载器3.1 类加载分类3.2 双亲委派3.3 自定义类加载器3.4 类加载器的命名空间4 打破双亲委派4.1 线程上下文类加载器4.2 自定义类加载器5 类的卸载1 什么是类加载 Java 虚拟…...

基于 vue3、vite、antdv、css 变量实现在线主题色切换
1、前言动态切换主题是一个很常见的需求. 实现方案也有很多, 如:编译多套 css 文件, 然后切换类名(需要预设主题, 不够灵活)less 在线编译(不兼容 ie, 性能较差)css 变量(不兼容 ie)但是这些基本都是针对 vue2 的, 我在网上并没有找到比较完整的解决 vue3 换肤的方案, 大多只处…...

“笨办法”学Python 3 ——练习 44 继承和组合
练习44 继承和组合 永远记住这一点:继承的大多数用法都可以用组合(composition)来简化或替换。并且无论如何都要避免多重继承。 内容提要: 1. 什么是继承? (1)隐式继承 (2&#x…...

绕过安全狗拦截的SQL注入
目录 靶场环境及中间件 知识补充 判断存在注入 整形get类注入 字符型GET注入...

JAVA练习62-无重复字符的最长子串、最长回文子串
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 一、题目1-无重复字符的最长子串 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 二、题目2-最长回文子串 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 总…...

【JavaWeb】复习重点内容
✅✅作者主页:🔗孙不坚1208的博客 🔥🔥精选专栏:🔗JavaWeb从入门到精通(持续更新中) 📋📋 本文摘要:本篇文章主要分享JavaWeb的学习重点内容。 &a…...

基于粒子群改进的灰色神经网络的时间序列预测,PSO-GNN模型,神经网络案例之20
目标 灰色模型原理 神经网络原理 灰色神经网络原理 粒子群算法的原理 粒子群改进灰色神经网络原理 粒子群改进灰色神经网络的代码实现 效果图 结果分析 展望 灰色模型 基本思想是用原始数据组成原始序列(0),经累加生成法生成序列(1),它可以弱化原始数据的随机性,使其呈现…...

Java中的反射使用
1、获取Class对象的三种方式 1、对象调用Object类的getClass()方法(对象.getClass()) 2、调用类的class属性(类名.class) 3、调用Class类的静态方法(Class.forName(“包名.类名”))常用 Student类 package…...

urho3d工具
AssetImporter 加载开放资源导入库支持的各种三维格式(http://assimp.sourceforge.net/)并保存Urho3D模型、动画、材质和场景文件。有关支持的格式列表,请参阅http://assimp.sourceforge.net/main_features_formats.html. Blender的另一种导出路径是使用Urho3D插件…...

HashMap数据结构
HashMap概述 HashMap是基于哈希表的Map接口实现的,它存储的是内容是键值对<key,value>映射。此类不保证映 射的顺序,假定哈希函数将元素适当的分布在各桶之间,可为基本操作(get和put)提供稳定的性能。 HashMap在JDK1.8以前数据结构和存…...

BFC的含义以及应用
什么是BFC? BFC全称是Block Formatting context,翻译过来就是块级格式化上下文。简单来说,BFC是一个完全独立的空间。让空间里的子元素不会影响到外面的布局。😃😃😃 如何触发BFC呢? mdn给了如下方式&a…...

电脑技巧:分享8个Win11系统必备小技巧
目录 1、让任务栏显示“右键菜单” 2、任务栏置顶 3、还原经典右键菜单 4、Win11版任务管理器 5、新版AltTab 6、开始菜单不再卡 7、为Edge浏览器添加云母效果 8、自动切换日/夜模式 Win11在很多地方都做了调整,但由于涉及到诸多旧有习惯,再加上…...

C/C++每日一练(20230226)
目录 17. 电话号码的字母组合 37. 解数独 51. N 皇后 52. N皇后 II 89. 格雷编码 90. 子集 II 17. 电话号码的字母组合 给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下(与电…...

Vue 3第二章:Vite文件目录结构及SFC语法
文章目录1. Vite 文件目录结构2. Vue3 SFC 语法规范介绍1. Vite 文件目录结构 Vue3 并没有强制规定文件目录结构,开发者可以按照自己喜欢的方式组织代码。不过,通常情况下,我们会按照以下方式组织文件目录: ├── public │ …...

Leetcode 剑指 Offer II 016. 不含重复字符的最长子字符串
题目难度: 中等 原题链接 今天继续更新 Leetcode 的剑指 Offer(专项突击版)系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~ 题目描述 给定一个字符串 s ,请你找出其中不含有重复字符的最长…...

TCP 的演化史-sack 与 reordering metric
就着 TCP 本身说事,而不是高谈阔论关于它是如何不合时宜,然后摆出一个更务虚的更新。 从一个 case 开始。 按照现在 Linux TCP(遵守 RFC) 实现,以下是一个将会导致 reordering 更新的 sack 序列: 考虑一种情况,这两个…...

【Spring6】| Spring的入门程序、集成Log4j2日志框架
目录 一:Spring的入门程序 1. Spring的下载 2. Spring的jar文件 3. 第一个Spring程序 4. 第一个Spring程序详细剖析 5. Spring6启用Log4j2日志框架 一:Spring的入门程序 1. Spring的下载 官网地址:https://spring.io/ 官网地址&…...

包子凑数(完全背包)
小明几乎每天早晨都会在一家包子铺吃早餐。 他发现这家包子铺有 N 种蒸笼,其中第 i种蒸笼恰好能放 Ai 个包子。 每种蒸笼都有非常多笼,可以认为是无限笼。 每当有顾客想买 X 个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若…...

Spring超级全家桶,学完绝对是惊艳面试官的程度
前言Spring框架自2002年诞生以来一直备受开发者青睐,它包括SpringMVC、SpringBoot、Spring Cloud、Spring Cloud Dataflow等解决方案。有人亲切的称之为:Spring 全家桶。很多研发人员把spring看作心目中最好的java项目,没有之一。所以这是重点…...

Redis主要数据类型
Redis 是一个数据结构服务器。 Redis 的核心是提供一系列本机数据类型,可帮助您解决从缓存到队列再到事件处理的各种问题Redis主要数据类型:String(字符串),Lists(列表),Sets&#x…...

【Linux | ELK 8.2】搭建ELKB集群Ⅰ—— 实验环境说明和搭建Elasticsearch集群
目录1. 实验环境1.1 实验工具1.2 操作系统1.3 架构版本、IP地址规划与虚拟机配置要求1.4 拓扑图1.5 其他要求2. 实验步骤2.1 安装Elasticsearch(单节点)(1)检查系统jdk版本(2)下载elasticsearch(…...

不同情况下*p和*p的区别(指针)
一说到指针,不少同学就会觉得云里雾里。首先要明白,指针和地址是一个概念;然后明白指针和指针变量的区别。先理解地址和数据,想象内存里面是一个个的小盒子,每个盒子对应一个编号,这个编号就是地址…...

Vuex基础语法
Vuex vuex官网 文章目录Vuexvuex的工作原理图2.vuex的环境搭建3.vuex的使用1.actons2. mutations3.getters4.vuex中的map映射属性4.1 mapState和mapGetters4.2 mapMutations和mapActions5.vuex多组件通信1.通过计算属性获得2.通过mapState获得6.vuex模块化和命名空间6.1模块化…...

刚上岸字节测试开发岗,全网最真实的大厂面试真题
首先我来解释一下为什么说是全网最真实的面试题,相信大家也发现软件测试面试题在网上流传也已不少,但是经过仔细查看发现了两个很重要的问题。 第一,网上流传的面试题的答案并不能保证百分百正确。也就是说各位朋友辛辛苦苦花了很多时间准备…...

Mac监控键盘输入并执行动作
最新内容在我的另一个博客:Mac监控键盘输入并执行动作 背景 电脑的安全是非常重要的,特别是里面的敏感数据,若是被有心之人利用,那后果不堪设想。 所以我们部门定下了一个规矩,谁离开工位要是不锁屏,就可以…...

Transformer输出张量的值全部相同?!
Transformer输出张量的值全部相同?!现象原因解决现象 输入经过TransformerEncoderLayer之后,基本所有输出都相同了。 核心代码如下, from torch.nn import TransformerEncoderLayer self.trans TransformerEncoderLayer(d_mode…...

港科夜闻|全国政协副主席梁振英先生率香港媒体高管团到访香港科大(广州)...
关注并星标每周阅读港科夜闻建立新视野 开启新思维1、全国政协副主席梁振英先生率香港媒体高管团到访香港科大(广州)。2月21日下午,在全国政协副主席、广州南沙粤港合作咨询委员会顾问梁振英先生的带领下,香港20余家媒体的高管及知名媒体人士到访香港科大…...

XML调用 CAPL Test Function
🍅 我是蚂蚁小兵,专注于车载诊断领域,尤其擅长于对CANoe工具的使用🍅 寻找组织 ,答疑解惑,摸鱼聊天,博客源码,点击加入👉【相亲相爱一家人】🍅 玩转CANoe&…...