网件路由器重置/seo怎么优化软件
#pic_center
R 1 R_1 R1
R 2 R^2 R2
目录
- 知识框架
- No.1 线性回归+基础优化算法
- 一、线性回归
- 1、买房案例
- 2、买房模型简化
- 3、线性模型
- 4、神经网络
- 5、损失函数
- 6、训练数据
- 7、参数学习
- 8、显示解
- 9、总结
- 二、 基础优化算法
- 1、梯度下降
- 2、学习率
- 3、小批量随机梯度下降
- 4、批量大小
- 5、总结
- 三、 线性回归的从零开始实现
- 1、D2L注意点
- 四、线性回归的简洁实现
- 五、QA
- No.2 Softmax回归+损失函数+图片分类数据集
- 一、Softmax回归
- 二、损失函数
- 三、图片分类数据集
- 四、Softmax回归从零开始
- 五、Softmax回归简单实现
- 六、QA
知识框架
No.1 线性回归+基础优化算法
一、线性回归
线性回归是机器学习最基础的一个模型;也是我们理解之后所有深度学习模型的基础;所以我们从线性回归开始
1、买房案例
这个应用是说如何在美国买房;在美国买房;跟在任何地方买房都是一样;就说我们先得去看一下那个房;了解一下房子的各种信息;他可能跟很多地方不一样的地方在于是说我看中一个房之后;我要买它的话我是需要讲价;就是说举个例子;这里有一个房;这里显示它的基本信息是说;这个房的出价;售价是说大概550万美金;它有7个卧室5个卫生间;它的居住面积是4,865 square feed;折合大概是460平米的样子;但是呢;注意到这个价格它不是你的成交价;它是说我的卖房经纪人他的列价;那下面你可以看到是有一个;美国一个比较有名的卖房的网站;他对这个房子的估价是;大概是540十万的样子;但这两个价格都是给你做参考用的;你最终是说你得去出一个价格;所以这是一个预测问题;就说你得根据现在的行情得预测;说你大概多少钱能买下这个房子;
所以可以看到是说我给你的是标价;给你的是预计价格;然后呢我们要出一个价;这里是说;你的出价真的很重要;因为是真正的钱;我们再来看两套房子;
然后你的x轴是你的年份;然后呢这个曲线;这个曲线是说;根据历史信息你周围的房子;系统对你的评估价格;然后这一个dollar符号是说;你在此你在什么时候;出了多少钱买下了这个房子;所以你的最好的;当然是说;你的出的价格是远低于你的系统的估价;就说那你就赚到了这个房子还可以;就说就是他的估价跟;出价和估价是差不多的;
然后这一个其实就是我了;是我们第一次买房不懂那么多规矩;我们就多出了10万块钱;所以看到就是说;这个是;在一年之后;系统对这个房子的评估;仍然比我们的出价还要低一些;所以这个大概是10万美金的差价;所以呢从此以后我们就开始关心房价预测这个问题;
2、买房模型简化
接下来;我们通过这个应用来引出线性回归;这里我们做一个简化的模型;我们有做两个假设;第一个假设是说;影响房价的关键因素是三个;卧室的个数;卫生间的个数和居住面积;我们记为X1 X2 X3;其实你还有很多别的因素;我们先做一个最简单的假设;第二个假设是说我的成交价;是我关键因素的加权和;那就是说我的成交价y;就是W1乘以X1加上W2乘X2加上W3乘X3;再加上一个b;这里权重W1 W2 W3和偏差b;的实际值我们之后再来决定;
但是我们假设我们这些值已经有了;那么我们的成交价就是这四个项加和;这是我们的核心模型;
3、线性模型
那么把它拓展到一般化的线性模型;就是说;我们如果给定一个n维的输入x;它由x1一直到x n这n个项;然后我的线性模型呢;就会有一个n维的权重w;它包括了w1一直到w n;和一个标量的偏差b;那么我们的输出;就是我们的输入的加权和;就是从W1乘以X1一直加加加;加到w n乘x n;再加上偏差b;如果我们写成一个向量版本的话;那就是我的输入x一个向量和;权重w的累积;再加上我的标量偏差b;好这就是我的线性模型;
线性模型;之所以我们讲这个模型;是因为它可以看作是一个单层的;神经网络;假设我们的神经网络;通常我们用这样子的图来表示;我们的输入层;还有这里我们是画了n个输入的元素;跟我们机器的n;第一个输入元素;跟我们机器的n是匹配的;那就是说我有输入的维度是d;然后呢;我输出的维度是一就是一个O1;
然后每一个箭头代表了一个权重;这里我们没有画偏差;那就是说;我这个神经网络是一个输入层;和一个输出层;它之所以叫做单层神经网络;是因为它带权重的层就是1;我们可以把输出层不当做一个层;因为我把权重跟输入层放在一起;
4、神经网络
我们第一次提到神经网络;其实最早源于神经科学;在很在60年代50年代;大家对神经科学的一些突破;使得大家来学想;我是不是能够做一个人工的神经网络;来模拟人的大脑;这里显示的是一个;真实的神经元的构造;
可以看到是说我们的输入;这个神经元的输入需要挺多的;然后我们的输入之后;会在神经元这个地方发生一些计算;它的输出结果会通过一个;这个输出到下一个神经元;他的计算就表示说;你的输入是不是能够过了我的阈值;如果过了我的阈值;我就会发射一个神经信号出去;如果没有的话那我就是不发射;
这也是为什么我们把这一类的模型叫做神经网络;因为它来自于神经科学;但实际上来说;在过去几十年的50年60年的发展中;神经网络已经;远远的超出了神经科学所了解的范畴我们也不那么去追求;
5、损失函数
我们已经有了模型了我们可以做预测;那么接下来一个很重要的事情是说;我们要衡量我们的;预测的质量会怎么样;也就是说我们要比较我们真实的值;就是卖房的成交价和预估值;就是我对这个房子的估计;所以我们要比较他们的区别;
但是区别越小我的模型质量越高;区别越大我的模型质量就越差;所以我们假设y是我们的真实值;y hat是我们的估计值;有一个很常见的一个比较是说1/2乘以真实值减去估计值的平方;这叫平方损失;因为它衡量的是说我们没有完全猜中真实值所带来的损失;或者说是经济损失了;在已知所有个1/2;是因为我们只有求导的时候;可以很方便的把它消去;
6、训练数据
定了模型;定了损失之后;我们就来学习我们的参数了;这是我们的权重和我们的偏差;我们怎么学习呢;我们是集数据来学习的;我们一般来说会先收集一些数据点;来训练我们的模型;例如说这个例子里面;我们可以去采集;过去6个月里面所有卖的房子;他的房子的信息和他的最终的成交价;这些数据我们一般会称之为训练数据;是用来训练我们模型的数据;通常来说是越多越好了;但实际上来说你会受限于很多事情;比如说这个世界上就那么多房子;每个月卖的房子;他其实是一个缓慢的;可能是在增加可能是减少的过程;但他不会有无穷多的房子;所以的话;我们就算把所有的房子的信息;采集下来;也可能就那么多;所以一般来说我们有很多技术来处理;当你的数据不够的时候会怎么办;我们之后会有非常多的算法来;探讨这个问题;这里我们先不再深入了解;我们先来看一下训练样本;假设我们有n个样本的话;那我们可以把它;假设我们一个样本;每一个x是一个列的相量的话;我们一排一排排好;然后作为转置;那我们的大x的每一行;对应的就是一个样本;的y同样的它是一个列项量;那也是有n个样本;每一个y i就是一个实数的数值;这就是我们的x和y;也就是我们的数据;
7、参数学习
那么我们就可以求解我们的模型了;我们的怎么根据我们之前的损失;给定我们的数据;那么我们来评估说对于我们的模型;在每一个数据上的损失求均值;就会得到我们的一个损失函数;我们把它写出来;就是说它是关于我们的数据;x和y关于我们的权重;关于我们的偏差;它可以写开;就是说;1/2这个像来自于我们的损失函数;n分之一就是我们要求平均;然后呢对于每一个样本;我们的真实YI;减去后面是我们的预测值;就是;一i个样本的x和我们的权重的累积;和我们的偏差;当然我们可以写成一个向量版本;就是一个y向量版本的y减去;矩阵x乘以向量w再减去b;b是一个标量;然后对向量求l to no;这就是我们的损失函数;那我们的目标呢;就是说我们要找到一个w和一个b;使得我们的整个这一项的值最小;也就是说;我们可以最小我们的损失函数;来学习参数;我们选取一个WB;使得能最小化这一项;把这个最小化的它做为我们的解;也就是w和b;好这个整个就是我们的求解过程;
8、显示解
线性模型了;所以它是有显示解的;我们来看一下它的显示解;长成什么样子;;我们最简单是说因为我们有偏差;我们先把偏差加入我们的权重;使得我们的写起来方便一点;具体怎么加呢;就是我们加入一列特征全1的特征;加进我们的x里面;让我们再把偏差放到权重的最后面;放到我们的w里面;那么我们的预测就是x乘以w了;那我们的损失函数可以写成;2 n分之一;然后y减去x是w它的l作弄;
回忆下我们之前介绍的;矩阵计算里面我们可以对它来;展开求导;就是大家也回忆一下;我们是讲过这个例子的;它就是等于1/2;y减去x w;也就是我们的预计的一个偏差;再转置乘以x;因为这是线性模型;所以它的损失是一个凸函数;我们并没有解释什么是凸函数;你可认为就是一个比较简单的一个这样子的函数;
所以呢突函数它的性质是说;它的最有解是满足于一定是;使得它的t do等于0的地方;所以我们把它带进去;最后会得到是说我们的最优解w*;其实可以计算成为x转置乘以x;然后再求逆;再乘以x再乘以y;这是我们最优解的形式;当然是说;这个是我们;唯一的一个有最优解的模型;我们之后所有的解都不会有最优解了;
9、总结
线性回归;是对n维输入的一个加权和;再加上一个偏差;这是它的对一个输出值的预估;然后对于;他跟预测值和真实值距的差异;通常是用平方损失来衡量;
线性回归是有一个;是一个非常特别的一个模型;它有显示解;我们;这堂课所有别的模型都没有显示解;因为有显示解的模型;一般来说过于简单;机器学习通常是用来解决;NP难的问题;如果你一个模型可以很快求解的话;通常来说它的复杂度有限;难于衡量特别复杂的数据和复杂的是应用;所以来说我们一般不会再去追求显示解;
最后的话;我们之所以解释线性回归;是因为线性回归;确实是可以看作是一个单层的神经网络它是最简单的一种神经网络;好我们线性回归就介绍到这里;
二、 基础优化算法
在我们提供线性回归的实现之前;我们先来很简单的介绍一下优化方法;我们在接下来会有一大章的内容;来解释各种不一样的优化方法;但是我们在这里;先给大家做一个直观上的理解
1、梯度下降
最常见的算法叫做梯度下降;就是说当我一个模型没有显示解的时候;我怎么办呢;我的一个做法是说;我首先挑选一个参数的随机初始值;可以随便在什么地方都没关系;然后呢我们记为W0;在接下来的时刻里面;我们不断的去更新W0;使得它接近我们的最优解;
具体来说我们的更新法则是这样子的;WT;它等于上一个时刻W(t-1)减去一个at;这是一个标量和损失函数;关于W(t-1)处的梯度;好这有两个项;第一个是它的梯度;第二个是它的学习率;这就a它;
我们来直观上解释下这是什么意思;我们来看一下这个图;这是一个很简单的二次函数的一个等高图;这个最优点在这个地方这是最小值;外面是最大值;如果看过地图的话也就是一个;每一个圈就是函数值等于一个固定值;同样值的一条曲线;
那么假设我们的W0是取在;这个地方的话;就是一般来说是随机取在一个地方;那么我们记得我们解释过它的梯度;也就是;使得这个函数的值增加最快的方向;那么它的负梯度就是它的;值下降最快的方向就是比如说这个黄线的方向;那么就是;负的这个梯度的值就是指向这个方向;接下来学习率就是;它代表是说我沿着这个方向;每一次走多远;比如说这个地方我走了大概那么远;然后把这个两个就说这一个;整个这一向就代表是这一条;这个点到这个点之间的向量;好我们把W0和这个相邻;加就可以拉得到W1的位置;同样的话在W1处;我们继续计算它的梯度;那就是在这个点上梯度;函数值下降最快的方向;然后我再沿着它再走一步;
就是你可认为我去爬山的时候;我可以不走大路对吧;我可以每一次沿着最陡的那条路;一直一直走下去;那我可以走到山顶;这就是梯度下降的一个直观解释;所以这里面学习率就是步长;它是一个叫做超参数的东西;超参数的话它一叫做hyperprameter;它就是一个我们需要;人为来指定的一个值;
2、学习率
首先我们不能选太小;就说如果选太小的话;那么每一次走的步长很有限;我们到达一个点;我们需要走非常非常多的步骤;这个不是一件很好的事情;这是因为计算梯度是一件很贵的事情;我们之前有讲过;在自动求导里面说过;计算梯度和;是一件基本上是我们;整个模型训练里面最贵的那一个部分;所以我们尽量的要少来计算梯度;但是反过来讲我们也不能走太大;为什么是因为;比如说;我们这个地方一下子步子迈太大了;就迈过了我们在下降的地方;迈到了很远的地方;使得我们一直在震荡;并没有真正的在下降;所以就是说我们学习率不能太大;也不能太小;我们接下来会有一系列的教程教大家怎么选取合适的学习率
3、小批量随机梯度下降
在实际中我们很少直接使用梯度下降;;深度学习最常见的梯度下降版本叫做;小批量随机梯度下降;这是因为述说梯度下降里面;我们每次计算梯度;要对整个损失函数求导;这个损失函数;是对我们所有的样本的一个;平均损失;
所以这意味着是说求一次梯度;我们要把整个样本给你重新算一遍;这个是很贵的一件事情;它可能需要数分钟或者数个小时;一般来说;我们需要可能走个几百步;或者几千步的样子;这样子我们的计算代价太大了;那么一个近似的办法怎么做呢;就是我可以回忆一下我的损失;就是我们所有的样本的;损失的平均;那么我们近似他的话;我们可以随机采样第一个样本;用他的损失的平均;来近似于整个样本集上的损失的平均;当你的b很大的时候;这个近似当然很精确;当你b等于小的时候;它的近似不那么精确;但是b你很小的时候计算它的梯度;那就是比较容易;因为梯度的计算复杂度是跟样本的;个数是线性相关的;所以这里又叫做批量大小;是另外一个重要的超参数;
4、批量大小
批量大小不能太大;也不能太小;如果你太小的话;一个问题是说;我每次就算那么几个样本的梯度;很难以定型;之后我们会利用GPU来做计算;GPU的话动不动就上百上千个核;当你批量太小那就是计算不好;很大很好利用;但你也不能太大;太大的话;内存;跟你的批量大小很多时候是成正比的;所以你的特别是用GPU的话;内存是一个呃很大的一个瓶颈;因为你可能就那么16GB或者32GB的内存;接下来是说你也可能会浪费计算;举一个极端的例子;所有的样本都是一样的话;那么你不管批量大小多大;你用一个样本计算剃度;还是用10个还是用100个;计算的效果都是一样的;所以的话;假设你一个批量里面;存在着大量的差不多的样本的时候;那么呢你就在很多时候浪费了计算了;所以不要太大;
5、总结
总结一下就是说;梯度下降;就是不断的沿着梯度的反方向来;更新我们的模型;求解它的好处是说;我不需要有知道这个显示解什么样子;我只要不断的知道怎么求导数就行了;我们知道在自动求导那一章;我们讲过说;我给你一个函数;给你一个模型;我的深度学习框架;是能够帮你自动求导的;所以的话这一块就是做的比较简单了;
另外一个是说;小批量随机梯度下降;是深度学习默认的求解方法;虽然我们还有更好的算法;但是呢一般来说它是最稳定的;而且是最简单的;所以我们通常使用它;其中小批量随机梯度下降;里面有两个重要的超参数;一个是批量的大小;一个是学习率;我们待会在今后给大家解释;如何选择合适的批量大小;和学习率;这就是非常简单的优化算法的介绍;当然;优化算法是一个非常大的一个方向;我们会有可能会有几节课专门来讨论更好的更稳定的一些算法;但是;知道这个最简单版本已经在接下来的几个星期里面我们先是够用了;
三、 线性回归的从零开始实现
1、D2L注意点
来实现我们所有;讲过的算法和一些技术细节;这样的好处是说;可以帮助大家从很底层的地方;了解每一个模块;具体是怎么实现的
四、线性回归的简洁实现
五、QA
No.2 Softmax回归+损失函数+图片分类数据集
一、Softmax回归
二、损失函数
三、图片分类数据集
四、Softmax回归从零开始
五、Softmax回归简单实现
六、QA
相关文章:

3.线性神经网络
#pic_center R 1 R_1 R1 R 2 R^2 R2 目录 知识框架No.1 线性回归基础优化算法一、线性回归1、买房案例2、买房模型简化3、线性模型4、神经网络5、损失函数6、训练数据7、参数学习8、显示解9、总结 二、 基础优化算法1、梯度下降2、学习率3、小批量随机梯度下降4、批量大小5、…...

python常用内置函数的介绍和使用
Python具有丰富的内置函数,这些函数是Python语言提供的基础功能。以下是一些常用的内置函数的介绍和使用: print(): 打印输出指定的内容到屏幕。 print("Hello, World!") len(): 返回给定对象的长度或元素个数。 s "Hello, World!"…...

2023辽宁省赛E
Solution 题目大致分为三个步骤 计算 P ( S ) P(S) P(S)证明删除区间连续且找到最值位置根据最值位置求出答案 接下来过程中不合法的组合数都默认为 0 0 0 第 1 步 - 求出总值 考虑 S m { 1 , 2 , ⋯ , m } S_m \{1, 2, \cdots, m\} Sm{1,2,⋯,m} , 则有 $P(S_{n2}…...

visual studio 启用C++11
用C11取决于你所使用的编译器和开发环境。以下是一些常见的编译器和相应的启用C11的方法: GCC (GNU Compiler Collection): 对于 GCC,你可以在编译时使用 -stdc11 或更高的标志来启用C11支持。例如: g -stdc11 yourfile.cpp -o yourprogramCl…...

获取某个抖音用户的视频列表信息
思路 确定url确定并获取相关参数构造header发送请求解析数据输出数据 运行结果 代码 import requests # 获取某个用户的的视频信息,截至20231028,程序可以正常运行。 # 构造请求头header headers {User-Agent:..........................,Cookie:...…...

【C语言】strcpy()函数(字符串拷贝函数详解)
🦄个人主页:修修修也 🎏所属专栏:C语言 ⚙️操作环境:Visual Studio 2022 目录 一.strcpy()函数简介 1.函数功能 2.函数参数 1>.char * destination 2>.const char * source 3.函数返回值 4.函数头文件 二.strcpy()函数的具体使用 1.使用s…...

机器学习之IV编码,分箱WOE编码
IV的概念与作用 全称是Information Value,中文的意思是信息价值,或者信息量作用: 1、构建分类模型时,经常需要对特征进行筛选。 2、挑选特征的过程考虑的因素比较多,最主要和最直接的衡量标准是特征的预测能力&#…...

区块链技术与应用 【全国职业院校技能大赛国赛题目解析】第六套区块链系统部署与运维
第六套区块链系统部署与运维题目 环境 : ubuntu20 fisco : 2.8.0 子任务1-2-1: 搭建区块链系统并验证 题意: P2P起始端口 30500 channel起始端口 20500 JSONRPC 8945 使用Docker配置 使用 build_chain.sh 文件 进行生成节点文件 root@192-168-19-133:/yijiu/mode6# bas…...

山西电力市场日前价格预测【2023-10-30】
日前价格预测 预测说明: 如上图所示,预测明日(2023-10-30)山西电力市场全天平均日前电价为309.35元/MWh。其中,最高日前电价为400.33元/MWh,预计出现在18:15。最低日前电价为0.00元/MWh,预计出…...

win10虚拟机安装教程
目录 1、安装VMware 10、12、16都可以,看个人选择 2、开始安装系统(以vm16为例) 3、在虚拟机中安装win10 完成 1、安装VMware 10、12、16都可以,看个人选择 下面链是我虚拟机安装包,需要可以下载。 YR云盘 软件安…...

2011-2021年“第四期”数字普惠金融与上市公司匹配(根据城市匹配)/上市公司数字普惠金融指数匹配数据
2011-2021年“第四期”数字普惠金融与上市公司匹配(根据城市匹配)/上市公司数字普惠金融指数匹配数据 1、时间:2011-2021年 指标:指标:股票代码、年份、行政区划代码、行业名称、行业代码、所属省份、所属城市、数字…...

CSP-J 2023 T3 一元二次方程 解题报告
CSP-J 2023 T3 一元二次方程 解题报告 Link 前言 今年 C S P CSP CSP的原题, 回家 1 h 1h 1h内写 A C AC AC, 但是考场上没有写出来 , 原因是脑子太不好了, 竟然调了两个小时没有调出来. 一等奖悬那… 正题 看完题目,第一眼就是大模拟, 并且 C C F CCF CCF绝对不会让你好受…...

中颖单片机SH367309全套量产PCM,专用动力电池保护板开发资料
方案总体介绍 整套方案硬件部分共2块板子,包括MCU主板,采用SH79F6441-32作为主处理器。MCU主板包括2个版本。PCM动力电池保护板采用SH367309。 软件方案采用Keil51建立的工程,带蓝牙的版本,支持5~16S电池。 硬件方案--MCU主板 MC…...

Android数据对象序列化原理与应用
序列化与反序列化 序列化是将对象转换为可以存储或传输的格式的过程。在计算机科学中,对象通常是指内存中的数据结构,如数组、列表、字典等。通过序列化,可以将这些对象转换为字节流或文本格式,以便在不同的系统之间进行传输或存…...

Linux cp命令:复制文件和目录
cp 命令,主要用来复制文件和目录,同时借助某些选项,还可以实现复制整个目录,以及比对两文件的新旧而予以升级等功能。 cp 命令的基本格式如下: [rootlocalhost ~]# cp [选项] 源文件 目标文件 选项: -a&…...

SpringBoot 接收不到 post 请求数据与接收 post 请求数据
文章归档:https://www.yuque.com/u27599042/coding_star/xwrknb7qyhqgdt10 SpringBoot 接收不到 post 请求数据 接收 post 请求数据,控制器方法参数需要使用 RequestParam 注解修饰 public BaseResponseResult<Object> getMailCode(RequestParam…...

vue3学习(十四)--- vue3中css新特性
文章目录 样式穿透:deep()scoped的原理 插槽选择器:slotted()全局选择器:global()动态绑定CSScss module 样式穿透:deep() 主要是用于修改很多vue常用的组件库(element, vant, AntDesigin),虽然配好了样式但是还是需要更改其他的样式就需要用…...

Python爬虫基础之Requests详解
目录 1. 简介2. 安装3. 发送请求4. 处理响应5. IP代理6. Cookie登录参考文献 原文地址:https://program-park.top/2023/10/27/reptile_4/ 本文章中所有内容仅供学习交流使用,不用于其他任何目的,严禁用于商业用途和非法用途,否则由…...

C++求根节点到叶子节点数字之和
文章目录 题目链接题目描述解题思路代码复杂度分析 题目链接 LCR 049. 求根节点到叶节点数字之和 - 力扣(LeetCode) 题目描述 给定一个二叉树的根节点 root ,树中每个节点都存放有一个 0 到 9 之间的数字。 每条从根节点到叶节点的路径都代表…...

C++搜索二叉树
本章主要是二叉树的进阶部分,学习搜索二叉树可以更好理解后面的map和set的特性。 1.二叉搜索树概念 二叉搜索树的递归定义为:非空左子树所有元素都小于根节点的值,非空右子树所有元素都大于根节点的值,而左右子树也是二叉搜索树…...

软件工程17-18期末试卷
2.敏捷开发提倡一个迭代80%以上的时间都在编程,几乎没有设计阶段。敏捷方法可以说是一种无计划性和纪律性的方法。错 敏捷开发是一种软件开发方法论,它强调快速响应变化、持续交付有价值的软件、紧密合作和适应性。虽然敏捷方法鼓励迭代开发和灵活性&…...

课题学习(九)----阅读《导向钻井工具姿态动态测量的自适应滤波方法》论文笔记
一、 引言 引言直接从原论文复制,大概看一下论文的关键点: 垂直导向钻井工具在近钻头振动和工具旋转的钻井工作状态下,工具姿态参数的动态测量精度不高。为此,通过理论分析和数值仿真,提出了转速补偿的算法以消除工具旋…...

阿里云服务器—ECS快速入门
这里对标阿里云的课程,一步步学习,链接在下面,学习完考试及格即可获取阿里云开发认证和领取证书,大家可以看看这个,这里我当作笔记,记一下提升印象! 内容很长,请耐心看完࿰…...

Hive简介及核心概念
本专栏案例数据集链接: https://download.csdn.net/download/shangjg03/88478038 1.简介 Hive 是一个构建在 Hadoop 之上的数据仓库,它可以将结构化的数据文件映射成表,并提供类 SQL 查询功能,用于查询的 SQL 语句会被转化为 MapReduce 作业,然后提交到 Hadoop 上运行。 …...

CrossOver 23.6.0 虚拟机新功能介绍
CrossOver 23.6.0 Mac 此应用程序允许您运行为 Microsoft Windows 编写的程序,而无需实际安装操作系统。 CrossOver 23.6.0 Mac 包括一个 Windows 程序库,用于它可以运行的 Windows 程序。 您会发现非常流行的应用程序,例如 Microsoft Word…...

(免费领源码)Java#Springboot#mysql农产品销售管理系统47627-计算机毕业设计项目选题推荐
摘 要 随着互联网趋势的到来,各行各业都在考虑利用互联网将自己推广出去,最好方式就是建立自己的互联网系统,并对其进行维护和管理。在现实运用中,应用软件的工作规则和开发步骤,采用Java技术建设农产品销售管理系统。…...

centos更改yum源
1、更改yum源 阿里云/etc/yum.repos.d/CentOS-Base.repo 金山云/etc/yum.repos.d/cloud.repo vi /etc/yum.repos.d/cloud.repo 替换为 [base] nameCentOS-$releasever - Base mirrorlisthttp://mirrorlist.centos.org/?release$releasever&arch$basearch&repoos&…...

React-快速搭建开发环境
1.安装 说明:react-excise-01是创建的文件名 npx create-react-app react-excise-01 2. 打开文件 说明:we suggest that you begin by typing:下面即是步骤。 cd react-excise-01 npm start 3.显示...

算法随想录算法训练营第四十六天| 583. 两个字符串的删除操作 72. 编辑距离
583. 两个字符串的删除操作 题目:给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 思路:这题思路主要是求出 word1 字符串和 word2 字符串中的最长相同的子字符串&…...

vue源码分析(五)——vue render 函数的使用
文章目录 前言一、render函数1、render函数是什么? 二、render 源码分析1.执行initRender方法2.vm._c 和 vm.$createElement 调用 createElement 方法详解(1)区别(2)代码 3、原型上的_render方法(1…...