当前位置: 首页 > news >正文

单变量回归问题

单变量回归问题

对于某房价问题,x为房屋大小,h即为预估房价,模型公式为:
hθ(x)=θ0+θ1xh_{\theta}(x)=\theta_{0}+\theta_{1}x hθ(x)=θ0+θ1x
要利用训练集拟合该公式(主要是计算θ0、θ1\theta_{0}、\theta_{1}θ0θ1),需要代价函数(计算当前模型和测试集数据的误差),
J(θ0,θ1)=12m∑i=1m(hθ(x(i))−y(i))2J(\theta_{0},\theta_{1})=\frac{1}{2m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})^2} J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2
当代价函数得到最小值时,此时拟合的公式最好。一般利用梯度下降法来得到代价函数的局部(全局)最优解。批量梯度下降的公式为
θj:=θj−α∂∂θjJ(θ0,θ1)(forj=0andj=1)\theta_{j}:=\theta_{j}-\alpha\frac{\partial }{\partial \theta_{j}}J(\theta_{0},\theta_{1}) (for \quad j=0\quad and \quad j=1) θj:=θjαθjJ(θ0,θ1)(forj=0andj=1)

∂∂θjJ(θ0,θ1)=∂∂θj(12m∑i=1m(hθ(x(i))−y(i))2)\frac{\partial }{\partial \theta_{j}}J(\theta_{0},\theta_{1})=\frac{\partial }{\partial \theta_{j}}(\frac{1}{2m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})^2}) θjJ(θ0,θ1)=θj(2m1i=1m(hθ(x(i))y(i))2)

j=0时,∂∂θ0J(θ0,θ1)=1m∑i=1m(hθ(x(i))−y(i))j=0时,\frac{\partial }{\partial \theta_{0}}J(\theta_{0},\theta_{1})=\frac{1}{m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})} j=0时,θ0J(θ0,θ1)=m1i=1m(hθ(x(i))y(i))

j=1时,∂∂θ1J(θ0,θ1)=1m∑i=1m(hθ(x(i))−y(i))⋅x(i)j=1时,\frac{\partial }{\partial \theta_{1}}J(\theta_{0},\theta_{1})=\frac{1}{m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})\cdot x^{(i)}} j=1时,θ1J(θ0,θ1)=m1i=1m(hθ(x(i))y(i))x(i)

α\alphaα为学习率,决定沿着代价函数下降程度最大的方向向下的步子有多大,在批量梯度下降中,我们每一次都同时让所有的参数减去学习速率乘以代价函数的导数。

如果α\alphaα太小了,即我的学习速率太小,需要很多步才能到达最低点,可能会很慢;
如果α\alphaα太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛。

在梯度下降法中,当我们接近局部最低点时,梯度下降法会自动采取更小的幅度,这是因为当我们接近局部最低点时,很显然在局部最低时导数等于零,所以当我们接近局部最低时,导数值会自动变得越来越小,所以梯度下降将自动采取较小的幅度,这就是梯度下降的做法。所以实际上没有必要再另外减小α\alphaα

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qARHfSRE-1677383475783)(C:\Users\20491\AppData\Roaming\Typora\typora-user-images\image-20230222172604462.png)]

相关文章:

单变量回归问题

单变量回归问题 对于某房价问题,x为房屋大小,h即为预估房价,模型公式为: hθ(x)θ0θ1xh_{\theta}(x)\theta_{0}\theta_{1}x hθ​(x)θ0​θ1​x 要利用训练集拟合该公式(主要是计算θ0、θ1\theta_{0}、\theta_{1}θ…...

ubuntu/linux系统知识(36)linux网卡命名规则

文章目录背景命名规范系统默认命名规则优势背景 很久以前Linux 操作系统的网卡设备的传统命名方式是 eth0、eth1、eth2等,属于biosdevname 命名规范。 服务器通常有多块网卡,有板载集成的,同时也有插在PCIe插槽的。Linux系统的命名原来是et…...

java的一些冷知识

接口并没有继承Object类首先接口是一种特殊的类,理由就是将其编译后是一个class文件大家都知道java类都继承自Object,但是接口其实是并没有继承Object类的 可以自己写代码测试: 获取接口类的class对象后遍历它的methods,可以发现是不存在Obje…...

java代理模式

代理模式 为什么要学习代理模式?因为这是SpringAOP的底层! 【SpringAOP和SpingMVC}】 代理模式的分类: 静态代理 动态代理 代理就像这里的中介,帮助你去做向房东租房,你不能直接解出房东,而房东和中介…...

JUC包:CountDownLatch源码+实例讲解

1 缘起 有一次听到同事谈及AQS时,我有很多点懵, 只知道入队和出队,CLH(Craig,Landin and Hagersten)锁,并不了解AQS的应用, 同时结合之前遇到的多线程等待应用场景,发现…...

Log4j2基本使用

文章目录1. Log4j2入门2. Log4j2配置3. Log4j2异步日志4. Log4j2的性能Apache Log4j 2是对Log4j的升级版,参考了logback的一些优秀的设计,并且修复了一些问题,因此带 来了一些重大的提升,主要有: 异常处理&#xff0c…...

A2L在CAN FD总线的使用

文章目录 前言CAN时间参数BTL CyclesTime Quantum时间份额SWJ同步跳转宽度波特率计算采样点计算CAN FD的第二采样点SSP推荐配置A2L配置总结前言 A2L作为XCP标定协议的载体,包括了总线信息的定义。本文介绍如何将基于CAN总线的A2L扩展为支持CAN-FD的A2L CAN时间参数 在介绍配…...

Android JetPack之启动优化StartUp初始化组件的详解和使用

一、背景 先看一下Android系统架构图 在Android设备中,设备先通电(PowerManager),然后加载内核层,内核走完,开始检查硬件,以及为硬件提供的公开接口,然后进入到库的加载。库挂载后开…...

[11]云计算|简答题|案例分析|云交付|云部署|负载均衡器|时间戳

升级学校云系统我们学校要根据目前学生互联网在线学习、教师教学资源电子化、教学评价过程化精细化的需求,计划升级为云教学系统。请同学们根据学校发展实际考虑云交付模型包含哪些?云部署采用什么模型最合适?请具体说明。9月3日买电脑还是租…...

C++11/C++14:lambda表达式

概念 lambda表达式:是一种表达式,是源代码的组成部分闭包:是lambda表达式创建的运行期对象,根据不同的捕获模式,闭包会持有数据的副本或引用闭包类:用于实例化闭包的类,每个lambda表达式都会触…...

算法课堂-分治算法

分治算法 把一任务分成几部分(通常是两部分)来完成(或只完成一部分),从而实现整个任务的完成 或者你可以把递归理解为分治算法的一部分 因为递归就是把问题分解来解决问题 例子 称假币 最笨的方法:两两称…...

操作系统权限提升(十六)之绕过UAC提权-CVE-2019-1388 UAC提权

系列文章 操作系统权限提升(十二)之绕过UAC提权-Windows UAC概述 操作系统权限提升(十三)之绕过UAC提权-MSF和CS绕过UAC提权 操作系统权限提升(十四)之绕过UAC提权-基于白名单AutoElevate绕过UAC提权 操作系统权限提升(十五)之绕过UAC提权-基于白名单DLL劫持绕过UAC提权 注&a…...

实例9:四足机器人运动学正解平面RR单腿可视化

实例9:四足机器人正向运动学单腿可视化 实验目的 通过动手实践,搭建mini pupper四足机器人的腿部,掌握机器人单腿结构。通过理论学习,熟悉几何法、旋转矩阵法在运动学正解(FK)中的用处。通过编程实践&…...

堆的基本存储

一、概念及其介绍堆(Heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵完全二叉树的数组对象。堆满足下列性质:堆中某个节点的值总是不大于或不小于其父节点的值。堆总是一棵完全二叉树。二、适用说明堆是利用完全二叉树的结构来维护一组数…...

如何获取物体立体信息通过一个相机

大家都知道的3D 技术是通过双眼视觉差异 得到的 但是3D的深度并没有那么强 为什么眼睛看到的就那么强 这无法让我们相信这个视觉差理论是和人眼睛立体感是一个原理 这个如今3D 电影都在用的技术 是和真正的人眼立体感 不一样的 或者说是有瑕疵的 分析一下现在的立体感技术 是通…...

【数据挖掘实战】——中医证型的关联规则挖掘(Apriori算法)

目录 一、背景和挖掘目标 1、问题背景 2、传统方法的缺陷 3、原始数据情况 4、挖掘目标 二、分析方法和过程 1、初步分析 2、总体过程 第1步:数据获取 第2步:数据预处理 第3步:构建模型 三、思考和总结 项目地址:Data…...

一些硬件学习的注意事项与快捷方法

xilinx系列软件 系统适用版本 要安装在Ubuntu系统的话,要注意提前看好软件适用的版本,不要随便安好了Ubuntu系统又发现对应版本的xilinx软件不支持。 如下图,发行说明中会说明这个版本的软件所适配的系统版本。 下载 vivado vitis这些都可以…...

【Tomcat】Tomcat安装及环境配置

文章目录什么是Tomcat为什么我们需要用到Tomcattomcat下载及安装1、进入官网www.apache.org,找到Projects中的project List2、下载之后,解压3、找到tomcat目录下的startup.bat文件,双击之后最后结果出现多少多少秒,表示安装成功4、…...

负载均衡:LVS 笔记(二)

文章目录LVS 二层负载均衡机制LVS 三层负载均衡机制LVS 四层负载均衡机制LVS 调度算法轮叫调度(RR)加权轮叫调度(WRR)最小连接调度(LC)加权最小连接调度(WLC)基于局部性的最少链接调…...

SEO优化:干货技巧分享,包新站1-15天100%收录首页

不管是老域名还是新域名,不管是多久没有收录首页的站,此法周期7-30天,包首页收录!本人不喜欢空吹牛逼不实践的理论,公布具体操作:假如你想收录的域名是a.com,那么准备如下材料1.购买5-10个最便宜…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...