[Datawhale][CS224W]图机器学习(六)
目录
- 一、简介
- 二、概述
- 三、算法
- 四、PageRank的缺点
- 五、Python实现迭代法
- 参考文献
一、简介
PageRank,又称网页排名、谷歌左侧排名、PR,是Google公司所使用的对其搜索引擎搜索结果中的网页进行排名的一种算法。
佩奇排名本质上是一种以网页之间的超链接个数和质量作为主要因素粗略地分析网页的重要性的算法。其基本假设是:更重要的页面往往更多地被其他页面引用(或称其他页面中会更多地加入通向该页面的超链接)。 其将从A页面到B页面的链接解释为“A页面给B页面投票”,并根据投票来源(甚至来源的来源,即链接到A页面的页面)和投票对象的等级来决定被投票页面的等级。简单的说,一个高等级的页面可以提升其他低等级的页面。
二、概述
PageRank是一种链接分析算法,它通过对超链接集合中的元素用数字进行权重赋值,实现“衡量集合范围内某一元素的相关重要性”的目的。该算法可以应用于任何含有元素之间相互引用的情况的集合实体。
PageRank的结果来源于一种基于图论的数学算法。它将万维网上所有的网页视作节点(node),而将超链接视作边(edge),并且考虑到了一些权威的网站,类似CNN。每个节点的权重值表示对应的页面的重要度。通向该网页的超链接称做“对该网页的投票(a vote of support)”。每个网页的权重值大小被递归地定义,依托于所有链接该页面的页面的权重值。例如,一个被很多页面的链接的页面将会拥有较高的权重值(high PageRank)。
三、算法
假设一个由4个网页组成的集合:A,B,C和D。同一页面中多个指向相同的链接视为同一个链接,并且每个页面初始的PageRank值相同,最初的算法将每个网页的初始值设定为1。但是在后来的版本以及下面的示例中,为了满足概率值位于0到1之间的需要,我们假设这个值是0.25。
在每次迭代中,给定页面的PR值(PageRank值)将均分到该页面所链接的页面上。
如果所有页面都只链接至A,那么A的PR值将是B,C及D的PR值之和,即:
PR(A)=PR(B)+PR(C)+PR(D)PR(A)=PR(B)+PR(C)+PR(D)PR(A)=PR(B)+PR(C)+PR(D)
重新假设B链接到A和C,C链接到A,并且D链接到A,B,C。最初一个页面总共只有一票。所以B给A ,C每个页面半票。以此类推,D投出的票只有三分之一加到了A的PR值上:
PR(A)=PR(B)2+PR(C)1+PR(D)3PR(A)={\frac {PR(B)}{2}}+{\frac {PR(C)}{1}}+{\frac {PR(D)}{3}}PR(A)=2PR(B)+1PR(C)+3PR(D)
换句话说,算法将根据每个页面连出总数L(X)L(X)L(X)平分该页面的PR值,并将其加到其所指向的页面:
PR(A)=PR(B)L(B)+PR(C)L(C)+PR(D)L(D)PR(A)={\frac {PR(B)}{L(B)}}+{\frac {PR(C)}{L(C)}}+{\frac {PR(D)}{L(D)}}PR(A)=L(B)PR(B)+L(C)PR(C)+L(D)PR(D)
或者
- PR(A) 是页面A的PR值
- PR(Ti)是页面Ti的PR值,在这里,页面Ti是指向A的所有页面中的某个页面
- C(Ti)是页面Ti的出度,也就是Ti指向其他页面的边的个数
- d 为阻尼系数,其意义是,在任意时刻,用户到达某页面后并继续向后浏览的概率,
该数值是根据上网者使用浏览器书签的平均频率估算而得,通常d=0.85
最后,所有这些PR值被换算成百分比形式再乘上一个修正系数 ddd。由于“没有向外链接的网页”传递出去的PR值会是0,而这会递归地导致指向它的页面的PR值的计算结果同样为零,所以赋给每个页面一个最小值(1−d)/N(1-d)/N(1−d)/N(N为页面的总数)
PR(A)=(PR(B)L(B)+PR(C)L(C)+PR(D)L(D)+⋯)d+1−dNPR(A)=\left({\frac {PR(B)}{L(B)}}+{\frac {PR(C)}{L(C)}}+{\frac {PR(D)}{L(D)}}+\,\cdots \right)d+{\frac {1-d}{N}}PR(A)=(L(B)PR(B)+L(C)PR(C)+L(D)PR(D)+⋯)d+N1−d
- 需要注意的是,在Sergey Brin和Lawrence Page的1998年原版论文中给每一个页面设定的最小值是1−d1-d1−d,而不是这里的(1−d)/N(1-d)/N(1−d)/N,这将导致集合中所有网页的PR值之和为N(N为集合中网页的数目)而非所期待的1。
因此,一个页面的PR值直接取决于指向它的的页面。如果在最初给每个网页一个随机且非零的PR值,经过重复计算,这些页面的PR值会趋向于某个定值,也就是处于收敛的状态,即最终结果。这就是搜索引擎使用该算法的原因。
那么什么时候,迭代结束哪?一般要设置收敛条件:比如上次迭代结果与本次迭代结果小于某个误差,我们结束程序运行;比如还可以设置最大循环次数。
四、PageRank的缺点
PageRank算法的主要缺点在于旧的页面的排名往往会比新页面高。因为即使是质量很高的新页面也往往不会有很多外链,除非它是某个已经存在站点的子站点。这也是PageRank需要多项算法结合以保证其结果的准确性的原因。
五、Python实现迭代法
下面仅仅实现迭代法,代码如下,需要用到Python的numpy库用于矩阵乘法:
# 输入为一个*.txt文件,例如
# A B
# B C
# B A
# ...表示前者指向后者import numpy as npif __name__ == '__main__':# 读入有向图,存储边f = open('input_1.txt', 'r')edges = [line.strip('\n').split(' ') for line in f]print(edges)# 根据边获取节点的集合nodes = []for edge in edges:if edge[0] not in nodes:nodes.append(edge[0])if edge[1] not in nodes:nodes.append(edge[1])print(nodes)N = len(nodes)# 将节点符号(字母),映射成阿拉伯数字,便于后面生成A矩阵/S矩阵i = 0node_to_num = {}for node in nodes:node_to_num[node] = ii += 1for edge in edges:edge[0] = node_to_num[edge[0]]edge[1] = node_to_num[edge[1]]print(edges)# 生成初步的S矩阵S = np.zeros([N, N])for edge in edges:S[edge[1], edge[0]] = 1print(S)# 计算比例:即一个网页对其他网页的PageRank值的贡献,即进行列的归一化处理for j in range(N):sum_of_col = sum(S[:,j])for i in range(N):S[i, j] /= sum_of_colprint(S)# 计算矩阵Aalpha = 0.85A = alpha*S + (1-alpha) / N * np.ones([N, N])print(A)# 生成初始的PageRank值,记录在P_n中,P_n和P_n1均用于迭代P_n = np.ones(N) / NP_n1 = np.zeros(N)e = 100000 # 误差初始化k = 0 # 记录迭代次数print('loop...')while e > 0.00000001: # 开始迭代P_n1 = np.dot(A, P_n) # 迭代公式e = P_n1-P_ne = max(map(abs, e)) # 计算误差P_n = P_n1k += 1print('iteration %s:'%str(k), P_n1)print('final result:', P_n)
输入的input_1.txt文本内容为:
A B
A C
A D
B D
C E
D E
B E
E A
结果为:
最后的一个数组,分别为A, B, C, D, E的PageRank值,其中E最高, A第二高, B和C相同均最低。
参考文献
[1] PageRank算法原理与实现
[2] 数据挖掘十大算法(六):PageRank算法原理与Python实现
[3] PageRank 维基百科,自由的百科全书
[4] 斯坦福CS224W图机器学习、图神经网络、知识图谱【同济子豪兄】
相关文章:
[Datawhale][CS224W]图机器学习(六)
目录一、简介二、概述三、算法四、PageRank的缺点五、Python实现迭代法参考文献一、简介 PageRank,又称网页排名、谷歌左侧排名、PR,是Google公司所使用的对其搜索引擎搜索结果中的网页进行排名的一种算法。 佩奇排名本质上是一种以网页之间的超链接个…...
aws ecr 使用golang实现的简单镜像转换工具
https://pkg.go.dev/github.com/docker/docker/client#section-readme 通过golang实现一个简单的镜像下载工具 总体步骤 启动一台海外区域的ec2实例安装docker和awscli配置凭证访问国内ecr仓库编写web服务实现镜像转换和自动推送 安装docker和awscli sudo yum remove awsc…...
【20230225】【剑指1】分治算法(中等)
1.重建二叉树class Solution { public:TreeNode* traversal(vector<int>& preorder,vector<int>& inorder){if(preorder.size()0) return NULL;int rootValuepreorder.front();TreeNode* rootnew TreeNode(rootValue);//int rootValuepreorder[0];if(preo…...
「JVM 高效并发」Java 线程
进程是资源分配(内存地址、文件 I/O 等)的基本单位,线程是执行调度(处理器资源调度)的基本单位; Loom 项目若成功为 Java 引入纤程(Fiber),则线程的执行调度单位可能变为…...
ADAS-可见光相机之Cmos Image Sensor
引言 “ 可见光相机在日常生活、工业生产、智能制造等应用有着重要的作用。在ADAS中更是扮演着重要的角色,如tesla model系列全车身10多个相机,不断感知周围世界。本文着重讲解下可见光相机中的CIS(CMOS Image Sensor)。” 定义 光是一种电磁波&…...
【ESP 保姆级教程】玩转emqx MQTT篇③ ——封装 EmqxIoTSDK,快速在项目集成
忘记过去,超越自己 ❤️ 博客主页 单片机菜鸟哥,一个野生非专业硬件IOT爱好者 ❤️❤️ 本篇创建记录 2023-02-26 ❤️❤️ 本篇更新记录 2023-02-26 ❤️🎉 欢迎关注 🔎点赞 👍收藏 ⭐️留言📝🙏 此博客均由博主单独编写,不存在任何商业团队运营,如发现错误,请…...
Python自动化测试面试题-编程篇
前言 随着行业的发展,编程能力逐渐成为软件测试从业人员的一项基本能力。因此在笔试和面试中常常会有一定量的编码题,主要考察以下几点。 基本编码能力及思维逻辑基本数据结构(顺序表、链表、队列、栈、二叉树)基本算法…...
CIT 594 Module 7 Programming AssignmentCSV Slicer
CIT 594 Module 7 Programming Assignment CSV Slicer In this assignment you will read files in a format known as “comma separated values” (CSV), interpret the formatting and output the content in the structure represented by the file. Q1703105484 Learning …...
链路追踪——【Brave】第一遍小结
前言 微服务链路追踪系列博客,后续可能会涉及到Brave、Zipkin、Sleuth内容的梳理。 Brave 何为Brave? github地址:https://github.com/openzipkin/brave Brave是一个分布式追踪埋点库。 #mermaid-svg-riwF9nbu1AldDJ7P {font-family:"…...
Vision Transformer(ViT)
1. 概述 Transformer[1]是Google在2017年提出的一种Seq2Seq结构的语言模型,在Transformer中首次使用Self-Atttention机制完全代替了基于RNN的模型结构,使得模型可以并行化训练,同时解决了在基于RNN模型中出现了长距离依赖问题,因…...
104-JVM优化
JVM优化为什么要学习JVM优化: 1:深入地理解 Java 这门语言 我们常用的布尔型 Boolean,我们都知道它有两个值,true 和 false,但你们知道其实在运行时,Java 虚拟机是 没有布尔型 Boolean 这种类型的&#x…...
QML 颜色表示法
作者: 一去、二三里 个人微信号: iwaleon 微信公众号: 高效程序员 如果你经常需要美化样式(最常见的有:文本色、背景色、边框色、阴影色等),那一定离不开颜色。而在 QML 中,颜色的表示方法有多种:颜色名、十六进制颜色值、颜色相关的函数,一起来学习一下吧。 老规矩…...
基础数据结构--线段树(Python版本)
文章目录前言特点操作数据存储updateLazy下移查询实现前言 月末了,划个水,赶一下指标(更新一些活跃值,狗头) 本文主要是关于线段树的内容。这个线段树的话,主要是适合求解我们一个数组的一些区间的问题&am…...
【micropython】SPI触摸屏开发
背景:最近买了几块ESP32模块,看了下mircopython支持还不错,所以买了个SPI触摸屏试试水,记录一下使用过程。硬件相关:SPI触摸屏使用2.4寸屏幕,常见淘宝均可买到,驱动为ILI9341,具体参…...
【云原生】k8s中Pod进阶资源限制与探针
一、Pod 进阶 1、资源限制 当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小,以及其他类型的资源。 当为 Pod 中的容器指定了 request 资源时,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还…...
AI - stable-diffusion(AI绘画)的搭建与使用
最近 AI 火的一塌糊涂,除了 ChatGPT 以外,AI 绘画领域也有很大的进步,以下几张图片都是 AI 绘制的,你能看出来么? 一、环境搭建 上面的效果图其实是使用了开源的 AI 绘画项目 stable-diffusion 绘制的,这是…...
应用场景五: 西门子PLC通过Modbus协议连接DCS系统
应用描述: 西门子PLC(S7200/300/400/200SMART)通过桥接器可以支持ModbusRTU串口和ModbusTCP以太网(有线和无线WIFI同时支持)两种通讯方式连接DCS系统,不需要编程PLC通讯程序,直接在模块中进行地…...
我继续问了ChatGPT关于SAP顾问职业发展前景的问题,大家感受一下
目录 SAP 顾问 跟其他IT工作收入情况相比是怎么样的? 如何成为SAP FICO 优秀的顾问 要想成为SAP FICO 优秀的顾问 ,需要ABA开发技能吗 SAP 顾问中哪个类型收入最多? 中国的ERP软件能够取代SAP吗? 今天我继续撩 ChatGPT。随便问…...
Python小白入门---00开篇介绍(简单了解一下)
Python 小白入门 系列教程 第一部分:Python 基础 介绍 Python 编程语言安装 Python 环境变量和数据类型运算符和表达式控制流程语句函数和模块异常处理 第二部分:Python 标准库和常用模块 Python 标准库简介文本处理和正则表达式文件操作和目录操作时…...
【算法基础】C++STL容器
一、Vector 1. 初始化(定义) (1)vector最基本的初始化: vector <int> a;(2)定义长度为10的vector: vector <int> a(10);(3)定义长度为10的vector,并且把所有元素都初始化为-3: vector <int...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
Spring Boot + MyBatis 集成支付宝支付流程
Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例(电脑网站支付) 1. 添加依赖 <!…...
Matlab实现任意伪彩色图像可视化显示
Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中,如何展示好看的实验结果图像非常重要!!! 1、灰度原始图像 灰度图像每个像素点只有一个数值,代表该点的亮度(或…...
