【深度学习】手把手教你开发自己的深度学习模板
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
- 前言
- 1数据相关
- 1.1 数据初探
- 1.2.数据处理
- 1.3 数据变形
- 2 定义网络,优化函数
- 3. 训练
前言
入坑2年后,重新梳理之前的知识,发现其实需要一个自己的深度学习的模板pipeline。他需要:
- 数据集切分
- dataset的功能
- dataloader的功能
- train的过程中print 每个epoch的训练集 测试集的准确率,loss
在这个过程中,我会从自我实现的角度一步步进化,已经说明为什么需要这样做。
用一个多层感知机为因子搭建一个pipeline
读取数据和处理异常数据用pandas
训练用torch 的tensor是一个好习惯。
计算用numpy
1数据相关
1.1 数据初探
根据15个特征预测员工是否会离职的问题, 很明显是个分类问题,输出是否会离职的概率做分类。
data = pd.read_csv("dataset/HR.csv")
data.head()
看一下都有哪些职位:
data.salary.unique()
array(['sales', 'accounting', 'hr', 'technical', 'support', 'management','IT', 'product_mng', 'marketing', 'RandD'], dtype=object)
工资等级:
data.salary.unique()
array(['low', 'medium', 'high'], dtype=object)
pandas 的group by 功能用一下:按工资和部门分组查询。
data.groupby(["salary","part"]).size()
1.2.数据处理
需要把工资的等级:high low ,…
部门分类:销售 技术 财务 …
转成onehot编码
pd.get_dummies(data.salary)
data = data.join(pd.get_dummies(data.salary))
del data["salary"]
data = data.join(pd.get_dummies(data.part))
del data["part"]
data.left.value_counts()
问题1:所以为啥需要做One-hot编码?
对于属性是不具备序列性、不能比较大小的属性,通常我们不能用简单的数值来粗暴替换。因为属性的数值大小会影响到权重矩阵的计算,不存在大小关系的属性,其权重也不应该发生相应的变化,那么我们就需要用到One-hot编码(也有人称独热编码)这种特殊的编码方式了。
来看一个简单的例子:假设我们有一个特征是自有房和无自有房,样本情况如下:
data = [['自有房',40,50000],['无自有房',22,13000],['自有房',30,30000]]
编码后的样本矩阵变为:
data = [[1,0,40,50000],[0,1,22,13000],[1,0,30,30000]]
问题2:One-hot编码适用算法,(但是我们这个算法就是逻辑回归在使用的,这块存疑吧)
有大神说,现在的经验,one-hot用在GBDT、XGBoost这些模型里面都挺好的,但是用在逻辑回归里不行。因为逻辑回归要求变量间相互独立,如果你只有一个属性需要做one-hot编码还好,如果你有多个属性需要做one-ont编码,那么当某个样本的多个one-hot属性同时为1时,这两个属性就完全相关了,必然会导致singular error,也就是非奇异矩阵不能求解唯一解,得不出唯一的模型,但是你又不可能把同一个属性的某一个one-hot延伸变量删除。
如果在逻辑回归中入模标称属性,可以直接替换成数值,然后做woe变换,用每个类别的woe值来代替原来的数值,这样既能够避免生成相关性强的变量,又能避开类别间大小无法比较的问题。
1.3 数据变形
构建X_data 和 Y_data
转成torch.tensor 并同意数据到torch.float32
2 定义网络,优化函数
因为是二分类问题,所以最终需要将线性计算结果,拟合到0,1之间,用sigmoid函数。
因为20个特征,所以选择20,输出的是0,1之间的概率,就是1个特征
二元交叉熵,二分类 当然用二元交叉熵
loss_fn = nn.BCELoss()
class Model(nn.Module):def __init__(self):super().__init__()self.liner_1 = nn.Linear(20, 64)self.liner_2 = nn.Linear(64, 64)self.liner_3 = nn.Linear(64,1)self.sigmoid = nn.Sigmoid()def forward(self, input):x = self.liner_1(input)x = F.relu(x)x = self.liner_2(x)x = F.relu(x)x = self.liner_3(x)x = self.sigmoid(x)return x
3. 训练
这里有个关键问题,with no grad 加在哪来的问题,
我们是为了看每一批次后的训练状态,它的梯度是不需要积累的,所以用 with no grad 包起来
for epoch in range(epochs):for i in range(no_of_batches):start = i * batchend = start + batchx = X[start: end]y = Y[start: end]y_pred = model(x)loss = loss_fn(y_pred, y)# 将model.parameters()optim.zero_grad()loss.backward()optim.step()with torch.no_grad():print("epoch:",epoch,"loss:",loss_fn(model(X),Y).data.item())
相关文章:
【深度学习】手把手教你开发自己的深度学习模板
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言1数据相关1.1 数据初探1.2.数据处理1.3 数据变形2 定义网络,优化函数3. 训练前言 入坑2年后,重新梳理之前的知识,发现其实需…...
一个诡异的 Pulsar InterruptedException 异常
背景 今天收到业务团队反馈线上有个应用往 Pulsar 中发送消息失败了,经过日志查看得知是发送消息时候抛出了 java.lang.InterruptedException 异常。 和业务沟通后得知是在一个 gRPC 接口中触发的消息发送,大约持续了半个小时的异常后便恢复正常了&…...
Java岗面试题--Java并发(volatile 专题)
目录1. 面试题一:谈谈 volatile 的使用及其原理补充:内存屏障volatile 的原理2. 面试题二:volatile 为什么不能保证原子性3. 面试题三:volatile 的内存语义4. 面试题四:volatile 的实现机制5. 面试题五:vol…...
Java---打家劫舍ⅠⅡ
目录 打家劫舍Ⅰ 题目分析 代码一 代码二 打家劫舍Ⅱ 打家劫舍Ⅰ 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被…...
MySQL Lesson4
1:关于查询结果集的去重(distinct) select distinct job from emp; **distinct只能出现在所有字段的最前面。所表示的含有是所有的结果联合起来去重。 select distinct deptno,job from emp order by deptno; select count(distinct job)from…...
浅谈权限获取方法之文件上传
概述 文件上传漏洞是发生在有上传功能的应用中,如果应用程序对用户的上传文件没有控制或者存在缺陷,攻击者可以利用应用上传功能存在的缺陷,上传木马、病毒等有危害的文件到服务器上面,控制服务器。 漏洞成因及危害 文件上传漏…...
资产设备防拆标签安全防护和资产定位解决方案
随着社会经济的发展和高新技术的日新月异,对各方面的安全要求也在不断地提高,以物联网安防、入侵报警和出入口控制、应急系统等为主的安全防范系统日益成为各类文物场所智能化弱电工程不可或缺的组成部分,是重点资产管理场所内加强管理和安全…...
企业电子招标采购源码之电子招标投标全流程!
随着各级政府部门的大力推进,以及国内互联网的建设,电子招投标已经逐渐成为国内主流的招标投标方式,但是依然有很多人对电子招投标的流程不够了解,在具体操作上存在困难。虽然各个交易平台的招标投标在线操作会略有不同࿰…...
【考研408】计算机网络笔记
文章目录计算机网络体系结构计算机网络概述计算机网络的组成计算机网络的功能计算机网络的分类计算机网络的性能指标课后习题计算机网络体系结构与参考模型计算机网络协议、接口、服务的概念ISO/OSI参考模型和TCP/IP模型课后习题物理层通信基础基本概念奈奎斯特定理与香农定理编…...
[C++]继承
🥁作者: 华丞臧 📕专栏:【C】 各位读者老爷如果觉得博主写的不错,请诸位多多支持(点赞收藏关注)。如果有错误的地方,欢迎在评论区指出。 推荐一款刷题网站 👉LeetCode 文章目录一、继承…...
优化知识管理方法丨整理零碎信息,提高数据价值
信息流时代,知识成集合倍数增长,看似我们学习了很多知识,但知识零碎无系统,知识之间缺乏联系,没有深度,所以虽然你很努力,但你发现自己的能力增长特别缓慢,你需要整理知识将零散的知…...
Windows操作系统的体系结构、运行环境和运行状态
我是荔园微风,作为一名在IT界整整25年的老兵,今天我们来重新审视一下Windows这个我们熟悉的不能再熟悉的系统。说Windows操作系统的运行环境和运行状态,首先要介绍一下Windows操作系统的体系结构,然后再要说到最重要的两个概念:核…...
【工作笔记】Http响应头过长
起因 突然有测试小伙伴反馈进公司官网主页会白屏,但只是个例不是普遍现象 查监控发现没监控到异常问题 查了很久(这个很久单指对于线上问题来说)才定位是请求的异常,因为这套系统的异常用的是 ExceptionHandler,这也导…...
hive建分区表,分桶表,内部表,外部表
hive建分区表,分桶表,内部表,外部表 一、概念介绍 Hive是基于Hadoop的一个工具,用来帮助不熟悉 MapReduce的人使用SQL对存储在Hadoop中的大规模数据进行数据提取、转化、加载。Hive数据仓库工具能将结构化的数据文件映射为一张数…...
【分享】灌溉制度设计小程序VB源代码
说明 根据作物需水特性和当地气候、土壤、农业技术及灌水技术等因素制定的灌水方案。主要内容包括灌水次数、灌水时间、灌水定额和灌溉定额。灌溉制度是规划、设计灌溉工程和进行灌区运行管理的基本资料,是编制和执行灌区用水计划的重要依据。 1—计划湿润土层允…...
PR9268/300-000库存现货振动传感器 雄霸工控
PR9268/300-000库存现货振动传感器 雄霸工控PR9268/300-000库存现货振动传感器 雄霸工控SDM010PR9670/110-100PR9670/010-100PR9670/003-000PR9670/002-000PR9670/001-000PR9670/000-000PR9600/014-000PR9600/011-000PR9376/010-021PR9376/010-011PR9376/010-011PR9376/010-001…...
浅谈模型评估选择及重要性
作者:王同学 来源:投稿 编辑:学姐 模型评估作为机器学习领域一项不可分割的部分,却常常被大家忽略,其实在机器学习领域中重要的不仅仅是模型结构和参数量,对模型的评估也是至关重要的,只有选择那…...
多线程的初识和创建
✨个人主页:bit me👇 ✨当前专栏:Java EE初阶👇 ✨每日一语:知不足而奋进,望远山而前行。 目 录💤一. 认识线程(Thread)🍎1. 线程的引入🍏2. 线程…...
一句话设计模式3:工厂模式
工厂模式:new多种对象的简单方式。 文章目录 工厂模式:new多种对象的简单方式。前言一、两种工厂模式二、如何实现工厂模式1. 简单工厂2. 抽象工厂总结前言 工厂模式可以说比较常见的设计模式,仔细观察在很多源码中都有此种模式的应用;用来解决创建对象的创建问题; 一、两种工…...
【Codeforces Round #853 (Div. 2)】C. Serval and Toxel‘s Arrays【题解】
题目 Toxel likes arrays. Before traveling to the Paldea region, Serval gave him an array aaa as a gift. This array has nnn pairwise distinct elements. In order to get more arrays, Toxel performed mmm operations with the initial array. In the iii-th opera…...
100天精通Python(数据可视化篇)——第77天:数据可视化入门基础大全(万字总结+含常用图表动图展示)
文章目录1. 什么是数据可视化?2. 为什么会用数据可视化?3. 数据可视化的好处?4. 如何使用数据可视化?5. Python数据可视化常用工具1)Matplotlib绘图2)Seaborn绘图3)Bokeh绘图6. 常用图表介绍及其…...
PMP考前冲刺2.27 | 2023新征程,一举拿证
题目1-2:1.在产品开发过程中,项目发起人向项目团队推荐了一种新材料,新材料比现有的材料更便宜而且性能更好。如果团队采用新材料,不但有利于提升产品质量,而且可以显著降低成本。项目经理应该怎么办?A.采用新材料&am…...
【C++】map和set的封装(红黑树)
map和set的封装一、介绍二、stl源码剖析三、仿函数获取数值四、红黑树的迭代器五、map的[]5.1 普通迭代器转const迭代器六、set源码七、map源码八、红黑树源码一、介绍 首先要知道map和set的底层都是用红黑树实现的 【数据结构】红黑树 set只需要一个key,但是map既…...
【批处理脚本】-1.14-移动文件(夹)命令move
"><--点击返回「批处理BAT从入门到精通」总目录--> 共10页精讲(列举了所有move的用法,图文并茂,通俗易懂) 在从事“嵌入式软件开发”和“Autosar工具开发软件”过程中,经常会在其集成开发环境IDE(CodeWarrior,S32K DS,Davinci,EB Tresos,ETAS…)中,…...
逻辑地址和物理地址转换
在操作系统的学习中,很多抵挡都会涉及虚拟地址转换为物理地址的计算,本篇就简单介绍一下在分页存储管理、分段存储管理、磁盘存储管理中涉及的地址转换问题。 虚拟地址与物理地址 编程一般只有可能和逻辑地址打交道,比如在 C 语言中&#x…...
HyperGBM用4记组合拳提升AutoML模型泛化能力
本文作者:杨健,九章云极 DataCanvas 主任架构师 如何有效提高模型的泛化能力,始终是机器学习领域的重要课题。经过大量的实践证明比较有效的方式包括: 利用Early Stopping防止过拟合通过正则化降低模型的复杂度使用更多的训练数…...
P6软件中的前锋线设置
卷首语 所谓前锋线,是指从评估时刻的时标点出发,用点划线一次连接各项活动的实际进展位置所形成的的线段,其通常为折线。 关键路径法 前锋线比较法,是通过在进度计划中绘制实际进度前锋线以判断活动实际进度与计划进度的偏差&a…...
Spring Boot + Vue3 前后端分离 实战 wiki 知识库系统<二>---后端架构完善与接口开发
数据库准备: 在上一次Spring Boot Vue3 前后端分离 实战 wiki 知识库系统<一>---Spring Boot项目搭建已经将SpringBoot相关的配置环境给搭建好了,接下来则需要为咱们的项目创建一个数据库。 1、mysql的安装: 关于mysql的安装这里就…...
如何在logback.xml中自定义动态属性
原文地址:http://blog.jboost.cn/trick-logback-prop.html 当使用logback来记录Web应用的日志时,我们通过在logback.xml中配置appender来指定日志输出格式及输出文件路径,这在一台主机或一个文件系统上部署单个实例没有问题,但是…...
嵌入式系统硬件设计与实践(第一步下载eda软件)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 现实生活中,我们经常发现有的人定了很多的目标,但是到最后一个都没有实现。这听上去有点奇怪,但确实是实实在在…...
网站seo应用/百度网站认证
题目描述 八尾勇喜欢吃苹果。她今天吃掉了 x(0\le x \le 100)x(0≤x≤100) 个苹果。英语课上学到了 apple 这个词语,想用它来造句。如果她吃了 1 个苹果,就输出 Today, I ate 1 apple.;如果她没有吃,那么就把 1 换成 0࿱…...
wordpress 登陆隐藏/新闻摘抄
人工智能不断地突破着我们的想象力,AI系统也在快速地进入现实世界,这种情况下,人与机器该如何相处?微软研究院资深研究员Ece Kamar就人机互补表达了她的看法,并揭示了人们对AI的一些常见误解。她相信,机器善…...
做企业网站需要资质吗/windows系统优化软件排行榜
一、什么是计算属性模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的。在模板中放入太多的逻辑会让模板过重且难以维护。二、计算属性的用法在一个计算属性里可以完成各种复杂的逻辑,包括运算、函数调用等,只要最终返回一个结果就…...
没有数据怎么做网站/国家免费职业培训平台
最近有空就着迷于java的世界,希望可以把自己的lind重构一个java版本出来,虽然遇到一些小问题,但也都解决了,还是那句话,知识需要积累,程序员需要一个追求! 类抽象类接口泛型类泛型接口非泛型类继…...
设计素材网站免费大全最新/软文推广系统
是时候给个例子了. scullc 是一个简化的 scull 模块的版本, 它只实现空设备 -- 永久 的内存区. 不象 scull, 它使用 kmalloc, scullc 使用内存缓存. 量子的大小可在编译 时和加载时修改, 但是不是在运行时 -- 这可能需要创建一个新内存区, 并且我们不想处 理这些不必要的细节. …...
建设网站群的好处/aso平台
Javascript语言的执行环境是”单线程”(single thread)。 所谓”单线程”,就是指一次只能完成一件任务。如果有多个任务,就必须排队,前面一个任务完成,再执行后面一个任务,以此类推。 这种模式…...