当前位置: 首页 > news >正文

机器学习概述

  • 机器学习是人工智能的核心研究领域之一,其研究动机是为了让计算机系统具有人的学习能力以便实现人工智能。

目前被广泛采用的机器学习的定义是“利用经验来改善计算机系统自身的性能”。由于“经验在计算机系统中主要是以数据的形式存在的,因此机器学习需要运用机器学习技术对数据进行分析,这就使得它逐渐成为智能数据分析技术的创新源之一,并且为此而受到越来越多的关注。

与数据挖掘的区别与联系

所谓数据挖掘就是:“识别出巨量数据中有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程”。顾名思义,数据挖掘就是试图从海量数据中找出有用的知识

可见,数据挖掘的教材和课程主要讲解各种不同的数据挖掘任务。比如:分类、回归、聚类、关联分析、异常分析、演变分析等等。

数据挖掘可以视为机器学习和数据库的交叉,它主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。

二者既有区别又有联系,整体来说,机器学习偏理论,数据挖掘偏应用

现在我们来看看分类的定义。分类就是构建一个分类模型,即分类器,然后通过分类器将数据对象映射到某个给定的类别中的过程。分类过程可以分为两步:

  1. 使用已知类标记的训练数据集学习分类模型。这一步称为分类器的训练阶段。

  1. 应用分类模型对未知类标记的对象进行分类。这一步称为分类器的工作阶段。实际上,在工作之前还又学到的模型进行性能测试评估(这一步称为分类器的测试阶段),如果模型的性能可以接受,才可以用它来对未知类标记的对象进行分类。

可见分类是一个三步走的过程:训练--测试--工作

分类的基本过程

分类:定义与过程

相关文章:

机器学习概述

机器学习是人工智能的核心研究领域之一,其研究动机是为了让计算机系统具有人的学习能力以便实现人工智能。目前被广泛采用的机器学习的定义是“利用经验来改善计算机系统自身的性能”。由于“经验在计算机系统中主要是以数据的形式存在的,因此机器学习需…...

企业网站自动生成系统的设计和实现

技术:Java、JSP等摘要:随着Internet技术的发展,人们的日常生活已经离不开网络。未来社会人们的生活和工作将越来越依赖于数字技术的发展,越来越数字化、网络化、电子化、虚拟化。Internet的发展历程以及目前的应用状况和发展趋势&…...

sikuli+eclipse对于安卓app自动化测试的应用

Sikuli是什么? 下面是来自于官网的介绍:Sikuli is a visual technology to automate and test graphical user interfaces (GUI) using images (screenshots). Sikuli includes Sikuli Script, a visual scripting API for Jython, and Sikuli IDE, an …...

react源码分析:babel如何解析jsx

同作为MVVM框架,React相比于Vue来讲,上手更需要JavaScript功底深厚一些,本系列将阅读React相关源码,从jsx -> VDom -> RDOM等一些列的过程,将会在本系列中一一讲解 工欲善其事,必先利其器 经过多年的…...

搜广推 WideDeep 与 DeepCrossNetwork (DCN) - 记忆+泛化共存

😄 这节来讲讲Wide&Deep与Deep&CrossNetwork (DCN)。从下图可看出WD非常重要,后面衍生出了一堆WD的变体。本节要讲的WD和DCN结构都非常简单,但其设计思想值得学习。 🚀 wide&deep:2016年,谷歌提出。 🚀 Deep&CrossNetwork (DCN):2017年,谷歌和斯坦…...

项目管理工具dhtmlxGantt甘特图入门教程(十四):导出/导入 Excel到 iCal

这篇文章给大家讲解利用dhtmlxgantt导入/导出Excel到iCal的操作方法。 dhtmlxGantt是用于跨浏览器和跨平台应用程序的功能齐全的Gantt图表,可满足应用程序的所有需求,是完善的甘特图图表库 DhtmlxGantt正版试用下载(qun;765665…...

k-means聚类总结

1.概述 聚类算法又叫做‘无监督学习’,其目的是将数据划分成有意义或有用的组(或簇)。 2.KMeans 关键概念:簇与质心 KMeans算法将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上来看是簇是一组一组聚集在一起的…...

char * 和const char *的区别

一、含义的不同 char* 表示一个指针变量,并且这个变量是可以被改变的。 const char*表示一个限定不会被改变的指针变量。 二、模式的不同 char*是常量指针,地址不可以改变,但是指针的值可变。 const char*是指向常量的常量指针&#xff…...

【剑指offer】JZ3 数组中重复的数字、 JZ4 二维数组中的查找

目录 JZ3 数组中重复的数字 思路: 解题步骤: JZ4 二维数组中的查找 思路 JZ3 数组中重复的数字 描述: 在一个长度为n的数组里的所有数字都在0到n-1的范围内。 数组中某些数字是重复的,但不知道有几个数字是重复的。也不知道每…...

数据采集 - 笔记

1 redis GitHub - redis/redis: Redis is an in-memory database that persists on disk. The data model is key-value, but many different kind of values are supported: Strings, Lists, Sets, Sorted Sets, Hashes, Streams, HyperLogLogs, Bitmaps. Redis 通常被称为数…...

8年测开经验面试28K公司后,吐血整理出高频面试题和答案

#01、如何制定测试计划? ❶参考点 1.是否拥有测试计划的制定经验 2.是否具备合理安排测试的能力 3.是否具备文档输出的能力 ❷面试命中率 80% ❸参考答案 测试计划包括测试目标、测试范围、测试环境的说明、测试类型的说明(功能,安全&am…...

spring读取properties顺序,重复key问题

最近搞个开源工具,涉及到配置问题。 举例 有个应用A工具,打成jar给人用。应用B引用了A的jar A应用里resources/sys.properties文件里有个coreSize1 B引用了A,期望修改coreSize的值,改成2 开始天真以为,B应用里有同…...

什么是api接口?(基本介绍)

API:应用程序接口(API:Application Program Interface) 应用程序接口是一组定义、程序及协议的集合,通过 API 接口实现计算机软件之间的相互通信。API 的一个主要功能是提供通用功能集。程序员通过调用 API 函数对应用程序进行开发,可以减轻编程任务。 …...

【2023全网最全教程】从0到1开发自动化测试框架(建议收藏)

一、序言 随着项目版本的快速迭代、APP测试有以下几个特点: 首先,功能点多且细,测试工作量大,容易遗漏;其次,代码模块常改动,回归测试很频繁,测试重复低效;最后&#x…...

3-5天炒股短线战法指标思想结合----超级短线源码无未来

超级短线以3-5个交易日获利3-5个点为目标,经过长期总结、实践、实盘操作编写的一个短线指标和思想! 如果你认为这一个指标像股市提款机一个,可以随意的赚钱,请你不要购买; 如果你你购买了指标又不想思考分析,想随意的赚…...

原始GAN-pytorch-生成MNIST数据集(代码)

文章目录原始GAN生成MNIST数据集1. Data loading and preparing2. Dataset and Model parameter3. Result save path4. Model define6. Training7. predict原始GAN生成MNIST数据集 原理很简单,可以参考原理部分原始GAN-pytorch-生成MNIST数据集(原理&am…...

注意,这些地区已发布2023年上半年软考报名时间

距离2023年上半年软考报名越来越近了,目前已有山西、四川、山东等地区发布报名简章,其中四川3月13日、山西3月14日、山东3月17日开始报名。 四川 报名时间:3月13日至4月3日。 2.报名入口:https://www.ruankao.org.cn/ 缴费时间…...

Html引入外部css <link>标签 @import

Html引入外部css 方法1: <link rel"stylesheet" href"x.css"> <link rel"stylesheet" href"x.css" /><link rel"stylesheet" href"x.css" type"text/css" /><link rel"sty…...

React源码分析8-状态更新的优先级机制

这是我的剖析 React 源码的第二篇文章&#xff0c;如果你没有阅读过之前的文章&#xff0c;请务必先阅读一下 第一篇文章 中提到的一些注意事项&#xff0c;能帮助你更好地阅读源码。 文章相关资料 React 16.8.6 源码中文注释&#xff0c;这个链接是文章的核心&#xff0c;文…...

如何在ChatGPT的API中支持多轮对话

一、问题 ChatGPT的API支持多轮对话。可以使用API将用户的输入发送到ChatGPT模型中&#xff0c;然后将模型生成的响应返回给用户&#xff0c;从而实现多轮对话。可以在每个轮次中保留用户之前的输入和模型生成的响应&#xff0c;以便将其传递给下一轮对话。这种方式可以实现更…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化

iOS 应用的发布流程一直是开发链路中最“苹果味”的环节&#xff1a;强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说&#xff0c;这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发&#xff08;例如 Flutter、React Na…...

一些实用的chrome扩展0x01

简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序&#xff0c;无论是测试应用程序、搜寻漏洞还是收集情报&#xff0c;它们都能提升工作流程。 FoxyProxy 代理管理工具&#xff0c;此扩展简化了使用代理&#xff08;如 Burp…...

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要&#xff0c;uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件&#xff0c;需要安装才能使用。 一、安装扩展插件 安装方法&#xff1a; 1.访问uniapp官方文档组件部分&#xff1a;组件使用的入门教程 | uni-app官网 点击左侧…...