揭秘关于TFRcord的五脏六腑
揭秘关于TFRcord的五脏六腑
前言:本篇文章将演示如何创建、解析和使用tf.Example消息,以及如何在.tfrecord文件之间对tf.Example消息进行序列化、写入和读取。
教程讲解使用的都是结构化数据,文章最后还会演示如果将图片写成.tfrecord文件,这在同个数据集用于不同模型情景之下非常有用。
官网文档是从讲原理,然后再展现示例。我觉得这种方式很容易劝退小白,因为原理晦涩难懂。这里先展示示例,然后再肢解示例,先总体再细分的思想
希望能让读者更容易理解和接受
一、如何将标量输入值变成协议消息
这里先不解释什么是协议消息,先看示例,后解释
# todo 导入相应工具包
import tensorflow as tfimport numpy as np
import IPython.display as display# todo 为了讲解,模拟生成一些数据
# 这里准备生成10000个元素
n_observations = int(1e4)# 随机生成10000个True和False布尔值
feature0 = np.random.choice([False, True], n_observations)# 随机生成10000个0-5的整数
feature1 = np.random.randint(0, 5, n_observations)# 随机生成10000个值是以下字符串的字符串
strings = np.array([b'cat', b'dog', b'chicken', b'horse', b'goat'])
feature2 = strings[feature1]# 随机生成10000个01正太分布数据,数据是浮点型
feature3 = np.random.randn(n_observations)# todo 下面分别演示将字符串类型标量、浮点型标量、整数型标量转换成协议消息
# todo 这些方法可以复制过去直接使用
def _bytes_feature(value):"""输入string / byte类型数据,返回bytes_list类型的协议消息"""if isinstance(value, type(tf.constant(0))):value = value.numpy() # BytesList won't unpack a string from an EagerTensor.return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) # 先记住这个写法,这个写法是TF官网推荐的写法def _float_feature(value):"""输入float / double类型数据,返回float_list类型的协议消息"""return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))def _int64_feature(value):"""输入bool / enum / int / uint.类型数据,返回int64_list类型的协议消息"""return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))# todo 通过调用上面的方法可以做到将相应类型的标量转换成协议消息了
print(_bytes_feature(b'test_string')) # 字符串
print(_bytes_feature(u'test_bytes'.encode('utf-8'))) # 二进制bytesprint(_float_feature(np.exp(1))) # 浮点型,自然数eprint(_int64_feature(True)) # 布尔型
print(_int64_feature(1)) # 整型
结果如下。结果展示的就是协议消息的“样子”,协议消息就是长这样,协议消息对应的值就是value里面的值
bytes_list {value: "test_string"
}bytes_list {value: "test_bytes"
}float_list {value: 2.7182817459106445
}int64_list {value: 1
}int64_list {value: 1
}
二、如何将协议消息变成二进制字符串
接着上面代码的延续,先不解释什么是二进制字符串,读者先阅读一遍代码的注释
# todo 将浮点型标量转成协议消息
feature = _float_feature(np.exp(1))# todo 使用方法SerializeToString(),将协议消息变成二进制字符串
string_010 = feature.SerializeToString()print(string_010) # 结果是: b'\x12\x06\n\x04T\xf8-@'"""
b'\x12\x06\n\x04T\xf8-@'
就是二进制字符串的样子
你可以简单把它理解成字符串
"""
三、如何将协议消息变成字典协议消息
字典型的协议消息如下,读者先看一遍代码的注释,再进行理解一遍
# todo 构建不同类型的协议消息
bytes_fea = _bytes_feature(b'test_string') # 字符串协议消息float_fea = _float_feature(np.exp(1)) # 浮点型协议消息int64_fea = _int64_feature(1) # 整数型协议消息# todo 将协议消息变成字典型协议消息
dict_fea = {'featrue0':bytes_fea,'featrue1':float_fea,'featrue2':int64_fea,
}
"""
说明:
dict_fea就是字典型协议消息,其中字典的key可以顺便自己命名,而字典的value就是协议消息
"""
字典型协议消息就是字典的value就是协议消息的字典
四、如何将字典协议消息变成二进制字符串
做法就是将字典协议消息转成特征消息,因为特征消息是协议消息的一种,所以可以将特征消息根据方法SerializeToString()变成二进制字符串
# todo 构建不同类型的协议消息
bytes_fea = _bytes_feature(b'test_string') # 字符串协议消息float_fea = _float_feature(np.exp(1)) # 浮点型协议消息int64_fea = _int64_feature(1) # 整数型协议消息# todo 将协议消息变成字典型协议消息
dict_fea = {'featrue0':bytes_fea,'featrue1':float_fea,'featrue2':int64_fea,
}# todo 将协议消息变成特征消息,代码就是这么写的,读者根据官网推荐这些写法这么写即可
example_proto = tf.train.Example(features=tf.train.Features(feature=dict_fea))# todo 将特征消息转成二进制字符串
bytes_string = example_proto.SerializeToString()
print(bytes_string)
结果如下。显示的就是字典协议消息的二进制字符串
b'\nF\n\x1b\n\x08featrue0\x12\x0f\n\r\n\x0btest_string\n\x14\n\x08featrue1\x12\x08\x12\x06\n\x04T\xf8-@\n\x11\n\x08featrue2\x12\x05\x1a\x03\n\x01\x01'
五、关于TFRecord文件各种疑问
-
什么是TFRecord文件
TFRecord 格式是一种用于存储二进制字符串记录序列的简单格式。
-
为什么要用TFRecord文件
通过tfrecord文件建立的数据管道Dataset对象读数的性能更好
-
TFRecord格式详细信息
TFRecord 文件包含一系列记录。该文件只能按顺序读取。
每条记录包含一个字节字符串(用于数据有效负载),外加数据长度,以及用于完整性检查的 CRC32C(使用 Castagnoli 多项式的 32 位 CRC)哈希值。
每条记录会存储为以下格式:
uint64 length uint32 masked_crc32_of_length byte data[length] uint32 masked_crc32_of_data
将记录连接起来以生成文件。此处对 CRC 进行了说明,且 CRC 的掩码为:
masked_crc = ((crc >> 15) | (crc << 17)) + 0xa282ead8ul
注:不需要在 TFRecord 文件中使用
tf.Example
。tf.Example
只是将字典序列化为字节字符串的一种方法。文本行、编码的图像数据,或序列化的张量(使用tf.io.serialize_tensor
,或在加载时使用tf.io.parse_tensor
)。有关更多选项,请参阅tf.io
模块。
六、TFRecord文件如何存储数据
TFRecord文件存储的是二进制字符串,二进制字符串由协议消息或者是字典协议消息生成,协议消息又由标量或者是向量生成。
所以TFRecord存储的二进制字符串相当于存储了真实的数据
之所以要通过协议消息、字典协议消息来存储这些数据,是因为这样子可以提高数据的复用率和使用效率
七、将numpy数据存储成TFRecord格式文件
读者可以直接阅读代码的注释.从上往下阅读即可,不需要觉得很难
# todo 导入相应工具包
import tensorflow as tfimport numpy as np
import IPython.display as display# todo 为了讲解,模拟生成一些数据
# 这里准备生成10000个元素
n_observations = int(1e4)# 随机生成10000个True和False布尔值
feature0 = np.random.choice([False, True], n_observations)# 随机生成10000个0-5的整数
feature1 = np.random.randint(0, 5, n_observations)# 随机生成10000个值是以下字符串的字符串
strings = np.array([b'cat', b'dog', b'chicken', b'horse', b'goat'])
feature2 = strings[feature1]# 随机生成10000个01正太分布数据,数据是浮点型
feature3 = np.random.randn(n_observations)# todo 下面分别演示将字符串类型标量、浮点型标量、整数型标量转换成协议消息
# todo 这些方法可以复制过去直接使用
def _bytes_feature(value):"""输入string / byte类型数据,返回bytes_list类型的协议消息"""if isinstance(value, type(tf.constant(0))):value = value.numpy() # BytesList won't unpack a string from an EagerTensor.return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) # 先记住这个写法,这个写法是TF官网推荐的写法def _float_feature(value):"""输入float / double类型数据,返回float_list类型的协议消息"""return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))def _int64_feature(value):"""输入bool / enum / int / uint.类型数据,返回int64_list类型的协议消息"""return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))def serialize_example(feature0, feature1, feature2, feature3):"""输入标量,转成字典协议消息,转成特征消息,转成二进制字符串"""# 构建字典协议消息feature = {'feature0': _int64_feature(feature0),'feature1': _int64_feature(feature1),'feature2': _bytes_feature(feature2),'feature3': _float_feature(feature3),}# Create a Features message using tf.train.Example.example_proto = tf.train.Example(features=tf.train.Features(feature=feature))return example_proto.SerializeToString()# todo 将二进制字符串写进tfrecord文件中
filename = './test.tfrecord'
with tf.io.TFRecordWriter(filename) as writer: # 构建一个写入对象的上下文for i in range(n_observations): # 循环写入example = serialize_example(feature0[i], feature1[i], feature2[i], feature3[i])writer.write(example)
<ipython-input-62-e109c8c4da87>:38: DeprecationWarning: In future, it will be an error for 'np.bool_' scalars to be interpreted as an indexreturn tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
从上面可以看出来,上面的代码需要循环写入数据,速度比较慢,下面介绍一种速度更加快速的写入方法
八、通过Dataset将numpy数据存储成TFRecord格式文件
过程代码解释了原理,并且这些代码都可以进行复用,请读者认真消化
# todo 导入相应工具包
import tensorflow as tfimport numpy as np
import IPython.display as display# todo 为了讲解,模拟生成一些数据
# 这里准备生成10000个元素
n_observations = int(1e4)# 随机生成10000个True和False布尔值
feature0 = np.random.choice([False, True], n_observations)# 随机生成10000个0-5的整数
feature1 = np.random.randint(0, 5, n_observations)# 随机生成10000个值是以下字符串的字符串
strings = np.array([b'cat', b'dog', b'chicken', b'horse', b'goat'])
feature2 = strings[feature1]# 随机生成10000个01正太分布数据,数据是浮点型
feature3 = np.random.randn(n_observations)# todo 下面分别演示将字符串类型标量、浮点型标量、整数型标量转换成协议消息
# todo 这些方法可以复制过去直接使用
def _bytes_feature(value):"""输入string / byte类型数据,返回bytes_list类型的协议消息"""if isinstance(value, type(tf.constant(0))):value = value.numpy() # BytesList won't unpack a string from an EagerTensor.return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) # 先记住这个写法,这个写法是TF官网推荐的写法def _float_feature(value):"""输入float / double类型数据,返回float_list类型的协议消息"""return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))def _int64_feature(value):"""输入bool / enum / int / uint.类型数据,返回int64_list类型的协议消息"""return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))def serialize_example(feature0, feature1, feature2, feature3):"""输入标量,转成字典协议消息,转成特征消息,转成二进制字符串"""# 构建字典协议消息feature = {'feature0': _int64_feature(feature0),'feature1': _int64_feature(feature1),'feature2': _bytes_feature(feature2),'feature3': _float_feature(feature3),}# Create a Features message using tf.train.Example.example_proto = tf.train.Example(features=tf.train.Features(feature=feature))return example_proto.SerializeToString()# todo 构建Dataset对象
features_dataset = tf.data.Dataset.from_tensor_slices((feature0, feature1, feature2, feature3))def tf_serialize_example(f0,f1,f2,f3):tf_string = tf.py_function( # py_function函数将python函数转成可以通过tf计算图进行运算的函数,提升速度的关键就是在此serialize_example,(f0,f1,f2,f3), # 传到函数serialize_example的参数tf.string) # 指定函数serialize_example返回值的类型return tf.reshape(tf_string, ()) # 返回结果# todo 构建一个生成器
def generator():for features in features_dataset:yield serialize_example(*features)if True:# todo 通过map函数将函数tf_serialize_example作用到features_dataset对象中的每个元素中,生成一个新的Dataset对象serialized_features_dataset = features_dataset.map(tf_serialize_example)
else:# todo 也可以直接通过生成器构建需要的Dataset对象serialized_features_dataset = tf.data.Dataset.from_generator(generator, # 可调用的生成器函数output_types=tf.string, # 输出数据的类型output_shapes=() # 输出数据的形状)# todo 通过Dataset对象,将数据存储成TFRecord格式文件
filename = 'test.tfrecord'
writer = tf.data.experimental.TFRecordWriter(filename)
writer.write(serialized_features_dataset)
九、通过Dataset对象读取TFRecord格式文件
过程代码解释了原理,并且这些代码都可以进行复用,请读者认真消化。定义特征描述,这个非常重要,主要是定义了特征描述的形状和类型
# 将TFRecord文件读成Dataset对象
filenames = [filename]
raw_dataset = tf.data.TFRecordDataset(filenames)# todo 定义特征描述,这个非常重要,格式如下,主要是定义了特征描述的形状和类型
feature_description = {'feature0': tf.io.FixedLenFeature([], tf.int64, default_value=0),'feature1': tf.io.FixedLenFeature([], tf.int64, default_value=0),'feature2': tf.io.FixedLenFeature([], tf.string, default_value=''),'feature3': tf.io.FixedLenFeature([], tf.float32, default_value=0.0),
}def _parse_function(example_proto):# 将二进制字符串转成实际的存储数据return tf.io.parse_single_example(example_proto, feature_description)# 运用map函数将函数_parse_function作用到Dataset对象的每个元素里面
parsed_dataset = raw_dataset.map(_parse_function)# parsed_dataset对象的每个元素就是真实的存储数据
for parsed_record in parsed_dataset.take(10):print(repr(parsed_record))break
结果如下
{'feature0': <tf.Tensor: shape=(), dtype=int64, numpy=1>, 'feature1': <tf.Tensor: shape=(), dtype=int64, numpy=2>, 'feature2': <tf.Tensor: shape=(), dtype=string, numpy=b'chicken'>, 'feature3': <tf.Tensor: shape=(), dtype=float32, numpy=-0.10460473>}
10、欢迎关注,下期讲解使用TFRecord文件读取和写入图像数据
相关文章:
揭秘关于TFRcord的五脏六腑
揭秘关于TFRcord的五脏六腑 前言:本篇文章将演示如何创建、解析和使用tf.Example消息,以及如何在.tfrecord文件之间对tf.Example消息进行序列化、写入和读取。 教程讲解使用的都是结构化数据,文章最后还会演示如果将图片写成.tfrecord文件&am…...
【Shell学习笔记】3.Shell 传递参数及数组
前言 本章介绍Shell的传递参数和数组。 Shell 传递参数 我们可以在执行 Shell 脚本时,向脚本传递参数,脚本内获取参数的格式为:$n。n 代表一个数字,1 为执行脚本的第一个参数,2 为执行脚本的第二个参数,…...
【终结Bug】ModuleNotFoundError: No module named ‘cv2’
解决方案: 打开 cmd键入 pip install opencv_python -i https://pypi.tuna.tsinghua.edu.cn/simple...

SQL Server2008详细安装步骤(保姆式教程)
安装包下载 链接:https://pan.baidu.com/s/1Rjx4DHJBeCW2asC_4Kzo6Q?pwdchui 提取码:chui 安装过程 1.解压后使用管理员身份打开安装程序 2.选择全新安装或向现有安装添加新功能 3.确认 4.输入产品密钥(上方网盘安装包里有࿰…...
Linux常用操作
Linux常用操作 前言常用命令:一些操作命令:前言 本文是笔者在使用cadence的过程中,操作linux的笔记,仅记录个人常用,持续更新 常用命令: (1)高频:会了这几个就能在文件…...
Golang 处理parquet文件实战教程
Parquet是Apache基金会支持的项目,是面向列存储二进制文件格式。支持不同类型的压缩方式,广泛用于数据科学和大数据环境,如Hadoop生态。 本文主要介绍Go如何生成和处理parquet文件。 创建结构体 首先创建struct,用于表示要处理…...

腾讯TIM实现即时通信 v3+ts实践
目录 初始化sdk 功能描述 初始化 准备 SDKAppID 调用初始化接口 监听事件 发送消息 创建消息 创建文本消息 登录登出 功能描述 登录 登出 销毁 登录设置 获取会话列表 功能描述 获取会话列表 获取全量的会话列表 历史消息 功能描述 拉取消息列表 分页拉取…...
华为OD机试 - 回文字符串(Java JS Python)
题目描述 如果一个字符串正读和反渎都一样(大小写敏感),则称它为一个「回文串」,例如: leVel是一个「回文串」,因为它的正读和反读都是leVel;同理a也是「回文串」art不是一个「回文串」,因为它的反读tra与正读不同Level不是一个「回文串」,因为它的反读leveL与正读不…...

APP测试的7大注意点。
1. 运行 1) App安装完成后的试运行,可正常打开软件。 2) App打开测试,是否有加载状态进度提示。 3) App⻚面间的切换是否流畅,逻辑是否正确。 4) 注册 同表单编辑⻚面 用户名密码⻓度 …...

设计模式-第4章(装饰模式)
装饰模式装饰模型装饰模式示例商场收银程序(简单工厂策略装饰模式实现)装饰模式总结装饰模型 装饰模式(Decorator),动态地给一个对象添加一些额外的职责,就增加功能来说,装饰模式比生成子类更为…...
【算法设计-分治】快速幂与龟速乘
文章目录1. 快速幂2. 龟速乘3. 快速幂取模4. 龟速乘取模5. 快速幂取模优化1. 快速幂 算法原理: 计算 311: 311 (35)2 x 335 (32)2 x 332 3 x 3仅需计算 3 次,而非 11 次 计算 310: 310 (35)235 (32)2 x 332 3 x 3仅需计算…...

基于新一代kaldi项目的语音识别应用实例
本文是由郭理勇在第二届SH语音技术研讨会和第七届Kaldi技术交流会上对新一代kaldi项目在学术及“部署”两个方面报告的内容上的整理。如果有误,欢迎指正。 文字整理丨李泱泽 编辑丨语音小管家 喜报:新一代Kaldi团队三篇论文均被语音顶会ICASSP-2023接…...

【GO】31.grpc 客户端负载均衡源码分析
这篇文章是记录自己查看客户端grpc负载均衡源码的过程,并没有太详细的讲解,参考价值不大,可以直接跳过,主要给自己看的。一.主要接口:Balancer Resolver1.Balancer定义Resolver定义具体位置为1.grpc源码对解析器(resol…...

PTA L1-058 6翻了(详解)
前言:内容包括:题目,代码实现,大致思路,代码解读 题目: “666”是一种网络用语,大概是表示某人很厉害、我们很佩服的意思。最近又衍生出另一个数字“9”,意思是“6翻了”࿰…...
【Origin科研绘图】如何快速绘制一个折线图 ||【前端特效】爱心篇 之 幸好有你 || 泰坦尼克号——乘客生存与否 预测 || PyCharm使用介绍
🎯作者主页:追光者♂ 🌸个人简介:在读计算机专业硕士研究生、CSDN-人工智能领域新星创作者🏆、2022年CSDN博客之星人工智能领域TOP4🌟、阿里云社区专家博主🏅 【无限进步,一起追光!】 🍎欢迎点赞👍 收藏⭐ 留言📝 🌿本篇,首先是:基于科研绘图工具O…...

一文解读电压放大器(电压放大器原理)
关于电压放大器的科普知识,之前讲过很多,今天为大家汇总一篇文章来详细的讲解电压放大器,希望大家对于电压放大器能有更清晰的认识。电压放大器是什么:电压放大器是一种常用的电子器件,它的主要作用是把输入信号的振幅…...

线上监控诊断神器arthas
目录 什么是arthas 常用命令列表 1、dashboard仪表盘 2、heapdump dumpJAVA堆栈快照 3、jvm 4、thread 5、memory 官方文档 安装使用 1、云安装arthas 2、获取需要监控进程ID 3、运行arthas 4、进入仪表盘 5、其他命令使用查看官方文档 什么是arthas arthas是阿…...

@Import注解的原理
此注解是springboot自动注入的关键注解,所以拿出来单独分析一下。 启动类的run方法跟进去最终找到refresh方法; 这里直接看这个org.springframework.context.support.AbstractApplicationContext#refresh方法即可,它下面有一个方法 invoke…...

平台总线开发(id和设备树匹配)
目录 一、ID匹配之框架代码 二、ID匹配之led驱动 三、设备树匹配 四、设备树匹配之led驱动 五、一个编写驱动用的宏 一、ID匹配之框架代码 id匹配(可想象成八字匹配):一个驱动可以对应多个设备 ------优先级次低 注意事项…...

TS泛型,原来就这?
一、泛型是什么?有什么作用? 当我们定义一个变量不确定类型的时候有两种解决方式: 使用any 使用any定义时存在的问题:虽然知道传入值的类型但是无法获取函数返回值的类型;另外也失去了ts类型保护的优势 使用泛型 泛型…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...